Emotion Classification Model

This model is a fine-tuned version of bert-base-uncased on the "dair-ai/emotion" dataset, using LoRA (Low-Rank Adaptation) for efficient fine-tuning.

label_list={"sadness", "joy", "love", "anger" ,"fear","surprise"}

Model description

[Describe your model, its architecture, and the task it performs]

Intended uses & limitations

[Describe what the model is intended for and any limitations]

Training and evaluation data

The model was trained on the "dair-ai/emotion" dataset.

Training procedure

[Describe your training procedure, hyperparameters, etc.]

Eval results

[Include your evaluation results]

How to use

Here's how you can use the model:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("ahmetyaylalioglu/text-emotion-classifier")
tokenizer = AutoTokenizer.from_pretrained("ahmetyaylalioglu/text-emotion-classifier")

text = "I am feeling very happy today!"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
predictions = outputs.logits.argmax(-1)
print(model.config.id2label[predictions.item()])
Downloads last month
87
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Space using ahmetyaylalioglu/text-emotion-classifier 1