spanbert-base-cased / README.md
ahmetayrnc's picture
update model card README.md
22ef16c
|
raw
history blame
2.26 kB
---
tags:
- generated_from_trainer
datasets:
- silicone
metrics:
- accuracy
model-index:
- name: spanbert-base-cased
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: silicone
type: silicone
config: swda
split: test
args: swda
metrics:
- name: Accuracy
type: accuracy
value: 0.7114959469417833
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# spanbert-base-cased
This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the silicone dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0346
- Accuracy: 0.7115
- Micro-precision: 0.7115
- Micro-recall: 0.7115
- Micro-f1: 0.7115
- Macro-precision: 0.2484
- Macro-recall: 0.2508
- Macro-f1: 0.2412
- Weighted-precision: 0.6569
- Weighted-recall: 0.7115
- Weighted-f1: 0.6741
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
| 1.043 | 1.0 | 2980 | 1.0346 | 0.7115 | 0.7115 | 0.7115 | 0.7115 | 0.2484 | 0.2508 | 0.2412 | 0.6569 | 0.7115 | 0.6741 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2