|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- silicone |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: spanbert-base-cased |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: silicone |
|
type: silicone |
|
config: swda |
|
split: test |
|
args: swda |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7114959469417833 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# spanbert-base-cased |
|
|
|
This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the silicone dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0346 |
|
- Accuracy: 0.7115 |
|
- Micro-precision: 0.7115 |
|
- Micro-recall: 0.7115 |
|
- Micro-f1: 0.7115 |
|
- Macro-precision: 0.2484 |
|
- Macro-recall: 0.2508 |
|
- Macro-f1: 0.2412 |
|
- Weighted-precision: 0.6569 |
|
- Weighted-recall: 0.7115 |
|
- Weighted-f1: 0.6741 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| |
|
| 1.043 | 1.0 | 2980 | 1.0346 | 0.7115 | 0.7115 | 0.7115 | 0.7115 | 0.2484 | 0.2508 | 0.2412 | 0.6569 | 0.7115 | 0.6741 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|