ahmetayrnc
commited on
Commit
•
22ef16c
1
Parent(s):
07188d1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- silicone
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: spanbert-base-cased
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Text Classification
|
13 |
+
type: text-classification
|
14 |
+
dataset:
|
15 |
+
name: silicone
|
16 |
+
type: silicone
|
17 |
+
config: swda
|
18 |
+
split: test
|
19 |
+
args: swda
|
20 |
+
metrics:
|
21 |
+
- name: Accuracy
|
22 |
+
type: accuracy
|
23 |
+
value: 0.7114959469417833
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# spanbert-base-cased
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the silicone dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 1.0346
|
34 |
+
- Accuracy: 0.7115
|
35 |
+
- Micro-precision: 0.7115
|
36 |
+
- Micro-recall: 0.7115
|
37 |
+
- Micro-f1: 0.7115
|
38 |
+
- Macro-precision: 0.2484
|
39 |
+
- Macro-recall: 0.2508
|
40 |
+
- Macro-f1: 0.2412
|
41 |
+
- Weighted-precision: 0.6569
|
42 |
+
- Weighted-recall: 0.7115
|
43 |
+
- Weighted-f1: 0.6741
|
44 |
+
|
45 |
+
## Model description
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Intended uses & limitations
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training and evaluation data
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training procedure
|
58 |
+
|
59 |
+
### Training hyperparameters
|
60 |
+
|
61 |
+
The following hyperparameters were used during training:
|
62 |
+
- learning_rate: 2e-05
|
63 |
+
- train_batch_size: 32
|
64 |
+
- eval_batch_size: 32
|
65 |
+
- seed: 42
|
66 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
+
- lr_scheduler_type: linear
|
68 |
+
- num_epochs: 1
|
69 |
+
|
70 |
+
### Training results
|
71 |
+
|
72 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 |
|
73 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
|
74 |
+
| 1.043 | 1.0 | 2980 | 1.0346 | 0.7115 | 0.7115 | 0.7115 | 0.7115 | 0.2484 | 0.2508 | 0.2412 | 0.6569 | 0.7115 | 0.6741 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.26.0
|
80 |
+
- Pytorch 1.13.1+cu116
|
81 |
+
- Datasets 2.9.0
|
82 |
+
- Tokenizers 0.13.2
|