File size: 2,260 Bytes
22ef16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
tags:
- generated_from_trainer
datasets:
- silicone
metrics:
- accuracy
model-index:
- name: spanbert-base-cased
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: silicone
      type: silicone
      config: swda
      split: test
      args: swda
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7114959469417833
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# spanbert-base-cased

This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the silicone dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0346
- Accuracy: 0.7115
- Micro-precision: 0.7115
- Micro-recall: 0.7115
- Micro-f1: 0.7115
- Macro-precision: 0.2484
- Macro-recall: 0.2508
- Macro-f1: 0.2412
- Weighted-precision: 0.6569
- Weighted-recall: 0.7115
- Weighted-f1: 0.6741

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
| 1.043         | 1.0   | 2980 | 1.0346          | 0.7115   | 0.7115          | 0.7115       | 0.7115   | 0.2484          | 0.2508       | 0.2412   | 0.6569             | 0.7115          | 0.6741      |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2