File size: 2,176 Bytes
02dc504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Train-Test-Augmentation-swinv2-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Train-Test-Augmentation-swinv2-base
This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7329
- Accuracy: 0.8206
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5364 | 0.98 | 23 | 0.8286 | 0.7257 |
| 0.4948 | 1.97 | 46 | 0.6373 | 0.7958 |
| 0.2036 | 2.99 | 70 | 0.5860 | 0.8234 |
| 0.1158 | 3.98 | 93 | 0.6284 | 0.8151 |
| 0.0656 | 4.96 | 116 | 0.6982 | 0.8129 |
| 0.0568 | 5.99 | 140 | 0.7678 | 0.8217 |
| 0.0332 | 6.97 | 163 | 0.7208 | 0.8206 |
| 0.0279 | 8.0 | 187 | 0.7053 | 0.8217 |
| 0.0169 | 8.98 | 210 | 0.7489 | 0.8256 |
| 0.0125 | 9.84 | 230 | 0.7329 | 0.8206 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.15.2
|