distilbert-base-uncased-finetuned-emotions-dataset-2
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.2689
- Accuracy: 0.937
- F1: 0.9369
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6095 | 1.0 | 500 | 0.2145 | 0.9245 | 0.9250 |
0.1686 | 2.0 | 1000 | 0.1670 | 0.933 | 0.9316 |
0.1164 | 3.0 | 1500 | 0.1631 | 0.939 | 0.9394 |
0.0924 | 4.0 | 2000 | 0.1829 | 0.938 | 0.9366 |
0.072 | 5.0 | 2500 | 0.1929 | 0.9355 | 0.9354 |
0.0545 | 6.0 | 3000 | 0.2117 | 0.9355 | 0.9357 |
0.0432 | 7.0 | 3500 | 0.2222 | 0.934 | 0.9340 |
0.0298 | 8.0 | 4000 | 0.2553 | 0.939 | 0.9385 |
0.0248 | 9.0 | 4500 | 0.2667 | 0.936 | 0.9358 |
0.0199 | 10.0 | 5000 | 0.2689 | 0.937 | 0.9369 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
- Downloads last month
- 123
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for agoor97/distilbert-base-uncased-finetuned-emotions-dataset-2
Base model
distilbert/distilbert-base-uncasedDataset used to train agoor97/distilbert-base-uncased-finetuned-emotions-dataset-2
Evaluation results
- Accuracy on emotionvalidation set self-reported0.937
- F1 on emotionvalidation set self-reported0.937