SentenceTransformer based on agentlans/multilingual-e5-small-aligned
This is a sentence-transformers model finetuned from agentlans/multilingual-e5-small-aligned. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
- One of the smallest multilingual embedding models on Huggingface
- This model is aligned which means translations have similar embeddings compared to unrelated sentences
- Finetuned on 1,000,000 randomly selected sentence pairs downloaded from Tatoeba 2024-09-26
- Includes pairs where one or both sentences are non-English
- For each pair, two negative examples were generated
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: agentlans/multilingual-e5-small-aligned
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("agentlans/multilingual-e5-small-aligned-v2")
# Run inference
sentences = [
'Esta es mi amiga Rachel, fuimos al instituto juntos.',
"Je n'ai pas encore pris ma décision.",
'When applying to American universities, your TOEFL score is only one factor.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,000,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 11.16 tokens
- max: 55 tokens
- min: 5 tokens
- mean: 12.27 tokens
- max: 76 tokens
- min: 0.0
- mean: 0.33
- max: 1.0
- Samples:
sentence_0 sentence_1 label Bring your friends with you.
Traga seus amigos com você.
1.0
I've been there already.
Você tem algo mais barato?
0.0
All my homework is done.
माझा सगळा होमवर्क झाला आहे.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0053 | 500 | 0.835 |
0.0107 | 1000 | 0.7012 |
0.016 | 1500 | 0.6765 |
0.0213 | 2000 | 0.4654 |
0.0267 | 2500 | 0.7546 |
0.032 | 3000 | 0.6098 |
0.0373 | 3500 | 0.644 |
0.0427 | 4000 | 0.5318 |
0.048 | 4500 | 0.5638 |
0.0533 | 5000 | 0.5556 |
0.0587 | 5500 | 0.5165 |
0.064 | 6000 | 0.4083 |
0.0693 | 6500 | 0.4683 |
0.0747 | 7000 | 0.5414 |
0.08 | 7500 | 0.4678 |
0.0853 | 8000 | 0.4225 |
0.0907 | 8500 | 0.4552 |
0.096 | 9000 | 0.4551 |
0.1013 | 9500 | 0.4347 |
0.1067 | 10000 | 0.292 |
0.112 | 10500 | 0.4677 |
0.1173 | 11000 | 0.3567 |
0.1227 | 11500 | 0.4663 |
0.128 | 12000 | 0.4333 |
0.1333 | 12500 | 0.375 |
0.1387 | 13000 | 0.4183 |
0.144 | 13500 | 0.5745 |
0.1493 | 14000 | 0.4569 |
0.1547 | 14500 | 0.426 |
0.16 | 15000 | 0.4903 |
0.1653 | 15500 | 0.4287 |
0.1707 | 16000 | 0.4375 |
0.176 | 16500 | 0.377 |
0.1813 | 17000 | 0.3848 |
0.1867 | 17500 | 0.3366 |
0.192 | 18000 | 0.3784 |
0.1973 | 18500 | 0.399 |
0.2027 | 19000 | 0.3798 |
0.208 | 19500 | 0.3275 |
0.2133 | 20000 | 0.3594 |
0.2187 | 20500 | 0.3555 |
0.224 | 21000 | 0.3565 |
0.2293 | 21500 | 0.4264 |
0.2347 | 22000 | 0.4138 |
0.24 | 22500 | 0.3149 |
0.2453 | 23000 | 0.3397 |
0.2507 | 23500 | 0.359 |
0.256 | 24000 | 0.3311 |
0.2613 | 24500 | 0.3632 |
0.2667 | 25000 | 0.366 |
0.272 | 25500 | 0.2899 |
0.2773 | 26000 | 0.2611 |
0.2827 | 26500 | 0.3497 |
0.288 | 27000 | 0.3534 |
0.2933 | 27500 | 0.273 |
0.2987 | 28000 | 0.3199 |
0.304 | 28500 | 0.2527 |
0.3093 | 29000 | 0.2755 |
0.3147 | 29500 | 0.3684 |
0.32 | 30000 | 0.347 |
0.3253 | 30500 | 0.2537 |
0.3307 | 31000 | 0.3665 |
0.336 | 31500 | 0.2512 |
0.3413 | 32000 | 0.2913 |
0.3467 | 32500 | 0.2619 |
0.352 | 33000 | 0.2573 |
0.3573 | 33500 | 0.3036 |
0.3627 | 34000 | 0.3388 |
0.368 | 34500 | 0.2384 |
0.3733 | 35000 | 0.31 |
0.3787 | 35500 | 0.3461 |
0.384 | 36000 | 0.378 |
0.3893 | 36500 | 0.2409 |
0.3947 | 37000 | 0.2969 |
0.4 | 37500 | 0.2881 |
0.4053 | 38000 | 0.3612 |
0.4107 | 38500 | 0.2662 |
0.416 | 39000 | 0.2796 |
0.4213 | 39500 | 0.3298 |
0.4267 | 40000 | 0.2828 |
0.432 | 40500 | 0.2367 |
0.4373 | 41000 | 0.2661 |
0.4427 | 41500 | 0.393 |
0.448 | 42000 | 0.2875 |
0.4533 | 42500 | 0.203 |
0.4587 | 43000 | 0.3211 |
0.464 | 43500 | 0.3404 |
0.4693 | 44000 | 0.315 |
0.4747 | 44500 | 0.3018 |
0.48 | 45000 | 0.2491 |
0.4853 | 45500 | 0.2584 |
0.4907 | 46000 | 0.2583 |
0.496 | 46500 | 0.3447 |
0.5013 | 47000 | 0.4332 |
0.5067 | 47500 | 0.297 |
0.512 | 48000 | 0.2697 |
0.5173 | 48500 | 0.2349 |
0.5227 | 49000 | 0.2176 |
0.528 | 49500 | 0.2775 |
0.5333 | 50000 | 0.2508 |
0.5387 | 50500 | 0.291 |
0.544 | 51000 | 0.2672 |
0.5493 | 51500 | 0.2638 |
0.5547 | 52000 | 0.2877 |
0.56 | 52500 | 0.2758 |
0.5653 | 53000 | 0.264 |
0.5707 | 53500 | 0.2372 |
0.576 | 54000 | 0.3384 |
0.5813 | 54500 | 0.2459 |
0.5867 | 55000 | 0.3047 |
0.592 | 55500 | 0.1926 |
0.5973 | 56000 | 0.2573 |
0.6027 | 56500 | 0.2816 |
0.608 | 57000 | 0.285 |
0.6133 | 57500 | 0.2397 |
0.6187 | 58000 | 0.1935 |
0.624 | 58500 | 0.3281 |
0.6293 | 59000 | 0.3306 |
0.6347 | 59500 | 0.2067 |
0.64 | 60000 | 0.2483 |
0.6453 | 60500 | 0.2719 |
0.6507 | 61000 | 0.2585 |
0.656 | 61500 | 0.2385 |
0.6613 | 62000 | 0.2229 |
0.6667 | 62500 | 0.2311 |
0.672 | 63000 | 0.2664 |
0.6773 | 63500 | 0.209 |
0.6827 | 64000 | 0.2643 |
0.688 | 64500 | 0.2108 |
0.6933 | 65000 | 0.3063 |
0.6987 | 65500 | 0.1802 |
0.704 | 66000 | 0.2285 |
0.7093 | 66500 | 0.2065 |
0.7147 | 67000 | 0.2467 |
0.72 | 67500 | 0.2178 |
0.7253 | 68000 | 0.2217 |
0.7307 | 68500 | 0.2549 |
0.736 | 69000 | 0.2026 |
0.7413 | 69500 | 0.2609 |
0.7467 | 70000 | 0.2393 |
0.752 | 70500 | 0.1958 |
0.7573 | 71000 | 0.2214 |
0.7627 | 71500 | 0.2079 |
0.768 | 72000 | 0.1574 |
0.7733 | 72500 | 0.2356 |
0.7787 | 73000 | 0.1864 |
0.784 | 73500 | 0.257 |
0.7893 | 74000 | 0.2149 |
0.7947 | 74500 | 0.2519 |
0.8 | 75000 | 0.2746 |
0.8053 | 75500 | 0.2145 |
0.8107 | 76000 | 0.2732 |
0.816 | 76500 | 0.2456 |
0.8213 | 77000 | 0.1841 |
0.8267 | 77500 | 0.1876 |
0.832 | 78000 | 0.2661 |
0.8373 | 78500 | 0.1293 |
0.8427 | 79000 | 0.2018 |
0.848 | 79500 | 0.1854 |
0.8533 | 80000 | 0.1644 |
0.8587 | 80500 | 0.1844 |
0.864 | 81000 | 0.1937 |
0.8693 | 81500 | 0.1486 |
0.8747 | 82000 | 0.244 |
0.88 | 82500 | 0.131 |
0.8853 | 83000 | 0.215 |
0.8907 | 83500 | 0.2398 |
0.896 | 84000 | 0.2014 |
0.9013 | 84500 | 0.1703 |
0.9067 | 85000 | 0.2009 |
0.912 | 85500 | 0.1712 |
0.9173 | 86000 | 0.2649 |
0.9227 | 86500 | 0.2149 |
0.928 | 87000 | 0.1912 |
0.9333 | 87500 | 0.1902 |
0.9387 | 88000 | 0.2609 |
0.944 | 88500 | 0.1846 |
0.9493 | 89000 | 0.1485 |
0.9547 | 89500 | 0.2076 |
0.96 | 90000 | 0.2449 |
0.9653 | 90500 | 0.2025 |
0.9707 | 91000 | 0.2635 |
0.976 | 91500 | 0.2596 |
0.9813 | 92000 | 0.2221 |
0.9867 | 92500 | 0.2168 |
0.992 | 93000 | 0.192 |
0.9973 | 93500 | 0.1966 |
1.0027 | 94000 | 0.2112 |
1.008 | 94500 | 0.1628 |
1.0133 | 95000 | 0.1059 |
1.0187 | 95500 | 0.1403 |
1.024 | 96000 | 0.1726 |
1.0293 | 96500 | 0.1973 |
1.0347 | 97000 | 0.1682 |
1.04 | 97500 | 0.1319 |
1.0453 | 98000 | 0.1427 |
1.0507 | 98500 | 0.1448 |
1.056 | 99000 | 0.1215 |
1.0613 | 99500 | 0.1064 |
1.0667 | 100000 | 0.0856 |
1.072 | 100500 | 0.1046 |
1.0773 | 101000 | 0.1127 |
1.0827 | 101500 | 0.0988 |
1.088 | 102000 | 0.1598 |
1.0933 | 102500 | 0.1592 |
1.0987 | 103000 | 0.1122 |
1.104 | 103500 | 0.0771 |
1.1093 | 104000 | 0.1355 |
1.1147 | 104500 | 0.1265 |
1.12 | 105000 | 0.1464 |
1.1253 | 105500 | 0.1578 |
1.1307 | 106000 | 0.1017 |
1.1360 | 106500 | 0.1047 |
1.1413 | 107000 | 0.1865 |
1.1467 | 107500 | 0.1721 |
1.152 | 108000 | 0.1096 |
1.1573 | 108500 | 0.181 |
1.1627 | 109000 | 0.1261 |
1.168 | 109500 | 0.1111 |
1.1733 | 110000 | 0.1286 |
1.1787 | 110500 | 0.1014 |
1.184 | 111000 | 0.1033 |
1.1893 | 111500 | 0.1124 |
1.1947 | 112000 | 0.1316 |
1.2 | 112500 | 0.1147 |
1.2053 | 113000 | 0.095 |
1.2107 | 113500 | 0.1074 |
1.216 | 114000 | 0.1183 |
1.2213 | 114500 | 0.1219 |
1.2267 | 115000 | 0.1264 |
1.232 | 115500 | 0.1339 |
1.2373 | 116000 | 0.0903 |
1.2427 | 116500 | 0.0923 |
1.248 | 117000 | 0.1028 |
1.2533 | 117500 | 0.093 |
1.2587 | 118000 | 0.1024 |
1.264 | 118500 | 0.1107 |
1.2693 | 119000 | 0.1078 |
1.2747 | 119500 | 0.0469 |
1.28 | 120000 | 0.107 |
1.2853 | 120500 | 0.1578 |
1.2907 | 121000 | 0.1012 |
1.296 | 121500 | 0.064 |
1.3013 | 122000 | 0.0816 |
1.3067 | 122500 | 0.0656 |
1.312 | 123000 | 0.1314 |
1.3173 | 123500 | 0.1345 |
1.3227 | 124000 | 0.1057 |
1.328 | 124500 | 0.1051 |
1.3333 | 125000 | 0.1246 |
1.3387 | 125500 | 0.0827 |
1.3440 | 126000 | 0.0763 |
1.3493 | 126500 | 0.0887 |
1.3547 | 127000 | 0.1332 |
1.3600 | 127500 | 0.0939 |
1.3653 | 128000 | 0.087 |
1.3707 | 128500 | 0.0671 |
1.376 | 129000 | 0.1377 |
1.3813 | 129500 | 0.1066 |
1.3867 | 130000 | 0.1224 |
1.392 | 130500 | 0.0797 |
1.3973 | 131000 | 0.0712 |
1.4027 | 131500 | 0.1141 |
1.408 | 132000 | 0.1045 |
1.4133 | 132500 | 0.0894 |
1.4187 | 133000 | 0.0897 |
1.424 | 133500 | 0.0779 |
1.4293 | 134000 | 0.0944 |
1.4347 | 134500 | 0.0674 |
1.44 | 135000 | 0.1532 |
1.4453 | 135500 | 0.0771 |
1.4507 | 136000 | 0.1154 |
1.456 | 136500 | 0.1159 |
1.4613 | 137000 | 0.147 |
1.4667 | 137500 | 0.0925 |
1.472 | 138000 | 0.0985 |
1.4773 | 138500 | 0.1023 |
1.4827 | 139000 | 0.082 |
1.488 | 139500 | 0.0947 |
1.4933 | 140000 | 0.0901 |
1.4987 | 140500 | 0.127 |
1.504 | 141000 | 0.1584 |
1.5093 | 141500 | 0.0734 |
1.5147 | 142000 | 0.1065 |
1.52 | 142500 | 0.0568 |
1.5253 | 143000 | 0.1081 |
1.5307 | 143500 | 0.0727 |
1.536 | 144000 | 0.1346 |
1.5413 | 144500 | 0.0894 |
1.5467 | 145000 | 0.0739 |
1.552 | 145500 | 0.0926 |
1.5573 | 146000 | 0.0984 |
1.5627 | 146500 | 0.0975 |
1.568 | 147000 | 0.0839 |
1.5733 | 147500 | 0.1053 |
1.5787 | 148000 | 0.1369 |
1.584 | 148500 | 0.093 |
1.5893 | 149000 | 0.1008 |
1.5947 | 149500 | 0.0981 |
1.6 | 150000 | 0.1071 |
1.6053 | 150500 | 0.0955 |
1.6107 | 151000 | 0.0901 |
1.616 | 151500 | 0.0803 |
1.6213 | 152000 | 0.1119 |
1.6267 | 152500 | 0.0679 |
1.6320 | 153000 | 0.1135 |
1.6373 | 153500 | 0.0768 |
1.6427 | 154000 | 0.0837 |
1.6480 | 154500 | 0.0857 |
1.6533 | 155000 | 0.0928 |
1.6587 | 155500 | 0.0808 |
1.6640 | 156000 | 0.0823 |
1.6693 | 156500 | 0.0713 |
1.6747 | 157000 | 0.0892 |
1.6800 | 157500 | 0.0914 |
1.6853 | 158000 | 0.0735 |
1.6907 | 158500 | 0.0827 |
1.696 | 159000 | 0.1006 |
1.7013 | 159500 | 0.0837 |
1.7067 | 160000 | 0.0812 |
1.712 | 160500 | 0.1056 |
1.7173 | 161000 | 0.0878 |
1.7227 | 161500 | 0.0625 |
1.728 | 162000 | 0.0965 |
1.7333 | 162500 | 0.1121 |
1.7387 | 163000 | 0.0794 |
1.744 | 163500 | 0.0969 |
1.7493 | 164000 | 0.0696 |
1.7547 | 164500 | 0.083 |
1.76 | 165000 | 0.0702 |
1.7653 | 165500 | 0.0768 |
1.7707 | 166000 | 0.0632 |
1.776 | 166500 | 0.0714 |
1.7813 | 167000 | 0.1 |
1.7867 | 167500 | 0.0665 |
1.792 | 168000 | 0.1139 |
1.7973 | 168500 | 0.1032 |
1.8027 | 169000 | 0.0983 |
1.808 | 169500 | 0.0812 |
1.8133 | 170000 | 0.0996 |
1.8187 | 170500 | 0.0872 |
1.8240 | 171000 | 0.0612 |
1.8293 | 171500 | 0.1038 |
1.8347 | 172000 | 0.0558 |
1.8400 | 172500 | 0.0595 |
1.8453 | 173000 | 0.0558 |
1.8507 | 173500 | 0.0717 |
1.8560 | 174000 | 0.058 |
1.8613 | 174500 | 0.0745 |
1.8667 | 175000 | 0.0749 |
1.8720 | 175500 | 0.074 |
1.8773 | 176000 | 0.0792 |
1.8827 | 176500 | 0.0574 |
1.888 | 177000 | 0.0968 |
1.8933 | 177500 | 0.0755 |
1.8987 | 178000 | 0.0852 |
1.904 | 178500 | 0.0502 |
1.9093 | 179000 | 0.0699 |
1.9147 | 179500 | 0.0793 |
1.92 | 180000 | 0.113 |
1.9253 | 180500 | 0.0708 |
1.9307 | 181000 | 0.0815 |
1.936 | 181500 | 0.0962 |
1.9413 | 182000 | 0.083 |
1.9467 | 182500 | 0.0761 |
1.952 | 183000 | 0.0776 |
1.9573 | 183500 | 0.0811 |
1.9627 | 184000 | 0.1159 |
1.968 | 184500 | 0.081 |
1.9733 | 185000 | 0.146 |
1.9787 | 185500 | 0.0715 |
1.984 | 186000 | 0.12 |
1.9893 | 186500 | 0.0692 |
1.9947 | 187000 | 0.07 |
2.0 | 187500 | 0.0935 |
2.0053 | 188000 | 0.0848 |
2.0107 | 188500 | 0.0474 |
2.016 | 189000 | 0.0417 |
2.0213 | 189500 | 0.04 |
2.0267 | 190000 | 0.1139 |
2.032 | 190500 | 0.0553 |
2.0373 | 191000 | 0.0495 |
2.0427 | 191500 | 0.0613 |
2.048 | 192000 | 0.0379 |
2.0533 | 192500 | 0.0487 |
2.0587 | 193000 | 0.0417 |
2.064 | 193500 | 0.0249 |
2.0693 | 194000 | 0.0418 |
2.0747 | 194500 | 0.043 |
2.08 | 195000 | 0.051 |
2.0853 | 195500 | 0.0339 |
2.0907 | 196000 | 0.0519 |
2.096 | 196500 | 0.0878 |
2.1013 | 197000 | 0.0432 |
2.1067 | 197500 | 0.0185 |
2.112 | 198000 | 0.085 |
2.1173 | 198500 | 0.0601 |
2.1227 | 199000 | 0.0935 |
2.128 | 199500 | 0.0538 |
2.1333 | 200000 | 0.0445 |
2.1387 | 200500 | 0.0499 |
2.144 | 201000 | 0.1029 |
2.1493 | 201500 | 0.0758 |
2.1547 | 202000 | 0.0648 |
2.16 | 202500 | 0.0612 |
2.1653 | 203000 | 0.0618 |
2.1707 | 203500 | 0.0566 |
2.176 | 204000 | 0.0179 |
2.1813 | 204500 | 0.0557 |
2.1867 | 205000 | 0.0321 |
2.192 | 205500 | 0.0562 |
2.1973 | 206000 | 0.0673 |
2.2027 | 206500 | 0.0286 |
2.208 | 207000 | 0.0284 |
2.2133 | 207500 | 0.0595 |
2.2187 | 208000 | 0.0693 |
2.224 | 208500 | 0.065 |
2.2293 | 209000 | 0.0546 |
2.2347 | 209500 | 0.0467 |
2.24 | 210000 | 0.0353 |
2.2453 | 210500 | 0.0475 |
2.2507 | 211000 | 0.0451 |
2.2560 | 211500 | 0.0348 |
2.2613 | 212000 | 0.031 |
2.2667 | 212500 | 0.0294 |
2.2720 | 213000 | 0.0462 |
2.2773 | 213500 | 0.0376 |
2.2827 | 214000 | 0.0607 |
2.288 | 214500 | 0.041 |
2.2933 | 215000 | 0.0462 |
2.2987 | 215500 | 0.0285 |
2.304 | 216000 | 0.0177 |
2.3093 | 216500 | 0.0577 |
2.3147 | 217000 | 0.0368 |
2.32 | 217500 | 0.041 |
2.3253 | 218000 | 0.0469 |
2.3307 | 218500 | 0.0669 |
2.336 | 219000 | 0.0288 |
2.3413 | 219500 | 0.0283 |
2.3467 | 220000 | 0.0293 |
2.352 | 220500 | 0.0364 |
2.3573 | 221000 | 0.0431 |
2.3627 | 221500 | 0.0478 |
2.368 | 222000 | 0.0223 |
2.3733 | 222500 | 0.0464 |
2.3787 | 223000 | 0.0598 |
2.384 | 223500 | 0.0716 |
2.3893 | 224000 | 0.0445 |
2.3947 | 224500 | 0.0356 |
2.4 | 225000 | 0.0344 |
2.4053 | 225500 | 0.0729 |
2.4107 | 226000 | 0.0256 |
2.416 | 226500 | 0.0383 |
2.4213 | 227000 | 0.0445 |
2.4267 | 227500 | 0.0286 |
2.432 | 228000 | 0.0216 |
2.4373 | 228500 | 0.0299 |
2.4427 | 229000 | 0.0674 |
2.448 | 229500 | 0.0353 |
2.4533 | 230000 | 0.0403 |
2.4587 | 230500 | 0.0693 |
2.464 | 231000 | 0.0701 |
2.4693 | 231500 | 0.0506 |
2.4747 | 232000 | 0.0374 |
2.48 | 232500 | 0.0511 |
2.4853 | 233000 | 0.047 |
2.4907 | 233500 | 0.0231 |
2.496 | 234000 | 0.0513 |
2.5013 | 234500 | 0.0955 |
2.5067 | 235000 | 0.049 |
2.512 | 235500 | 0.048 |
2.5173 | 236000 | 0.0302 |
2.5227 | 236500 | 0.0207 |
2.528 | 237000 | 0.0357 |
2.5333 | 237500 | 0.0297 |
2.5387 | 238000 | 0.0554 |
2.544 | 238500 | 0.0386 |
2.5493 | 239000 | 0.0249 |
2.5547 | 239500 | 0.0432 |
2.56 | 240000 | 0.0539 |
2.5653 | 240500 | 0.0348 |
2.5707 | 241000 | 0.0233 |
2.576 | 241500 | 0.0702 |
2.5813 | 242000 | 0.0393 |
2.5867 | 242500 | 0.0625 |
2.592 | 243000 | 0.0197 |
2.5973 | 243500 | 0.0399 |
2.6027 | 244000 | 0.0495 |
2.608 | 244500 | 0.0407 |
2.6133 | 245000 | 0.0412 |
2.6187 | 245500 | 0.0234 |
2.624 | 246000 | 0.0559 |
2.6293 | 246500 | 0.0555 |
2.6347 | 247000 | 0.0328 |
2.64 | 247500 | 0.0375 |
2.6453 | 248000 | 0.0257 |
2.6507 | 248500 | 0.0212 |
2.656 | 249000 | 0.0633 |
2.6613 | 249500 | 0.0268 |
2.6667 | 250000 | 0.0354 |
2.672 | 250500 | 0.0341 |
2.6773 | 251000 | 0.0337 |
2.6827 | 251500 | 0.0519 |
2.6880 | 252000 | 0.0386 |
2.6933 | 252500 | 0.0603 |
2.6987 | 253000 | 0.0358 |
2.7040 | 253500 | 0.0352 |
2.7093 | 254000 | 0.0448 |
2.7147 | 254500 | 0.037 |
2.7200 | 255000 | 0.0375 |
2.7253 | 255500 | 0.04 |
2.7307 | 256000 | 0.0729 |
2.7360 | 256500 | 0.0246 |
2.7413 | 257000 | 0.045 |
2.7467 | 257500 | 0.0333 |
2.752 | 258000 | 0.0212 |
2.7573 | 258500 | 0.0458 |
2.7627 | 259000 | 0.048 |
2.768 | 259500 | 0.0287 |
2.7733 | 260000 | 0.0345 |
2.7787 | 260500 | 0.0459 |
2.784 | 261000 | 0.0449 |
2.7893 | 261500 | 0.0518 |
2.7947 | 262000 | 0.0433 |
2.8 | 262500 | 0.0572 |
2.8053 | 263000 | 0.0357 |
2.8107 | 263500 | 0.0394 |
2.816 | 264000 | 0.0531 |
2.8213 | 264500 | 0.0294 |
2.8267 | 265000 | 0.039 |
2.832 | 265500 | 0.0505 |
2.8373 | 266000 | 0.0167 |
2.8427 | 266500 | 0.031 |
2.848 | 267000 | 0.0362 |
2.8533 | 267500 | 0.0246 |
2.8587 | 268000 | 0.0317 |
2.864 | 268500 | 0.0296 |
2.8693 | 269000 | 0.0297 |
2.8747 | 269500 | 0.0517 |
2.88 | 270000 | 0.019 |
2.8853 | 270500 | 0.0358 |
2.8907 | 271000 | 0.0589 |
2.896 | 271500 | 0.031 |
2.9013 | 272000 | 0.0421 |
2.9067 | 272500 | 0.0422 |
2.912 | 273000 | 0.016 |
2.9173 | 273500 | 0.0645 |
2.9227 | 274000 | 0.0514 |
2.928 | 274500 | 0.0173 |
2.9333 | 275000 | 0.0432 |
2.9387 | 275500 | 0.0594 |
2.944 | 276000 | 0.0228 |
2.9493 | 276500 | 0.0152 |
2.9547 | 277000 | 0.0579 |
2.96 | 277500 | 0.0578 |
2.9653 | 278000 | 0.0246 |
2.9707 | 278500 | 0.0609 |
2.976 | 279000 | 0.0613 |
2.9813 | 279500 | 0.0589 |
2.9867 | 280000 | 0.047 |
2.992 | 280500 | 0.0264 |
2.9973 | 281000 | 0.0464 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.0
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 22
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for agentlans/multilingual-e5-small-aligned-v2
Base model
intfloat/multilingual-e5-small
Finetuned
agentlans/multilingual-e5-small-aligned