File size: 7,883 Bytes
1d6f7e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b98fb0f
 
 
1d6f7e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
base_model: stabilityai/stablelm-3b-4e1t
datasets:
- tiiuae/falcon-refinedweb
- togethercomputer/RedPajama-Data-1T
- CarperAI/pilev2-dev
- bigcode/starcoderdata
- allenai/peS2o
extra_gated_fields:
  Country: text
  Email: text
  I ALLOW Stability AI to email me about new model releases: checkbox
  Name: text
  Organization or Affiliation: text
inference: false
language:
- en
license: cc-by-sa-4.0
model_creator: stabilityai
model_name: stablelm-3b-4e1t
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- causal-lm
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
---
# stabilityai/stablelm-3b-4e1t-GGUF

Quantized GGUF model files for [stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) from [stabilityai](https://huggingface.co/stabilityai)

** StableLM support currently requires using this [llama.cpp fork](https://github.com/Galunid/llama.cpp/tree/stablelm-support) by [Galunid](https://github.com/Galunid). Quantized and tested with the `stablelm-support` branch, commit `a00bb06` **

StableLM support pull request: https://github.com/ggerganov/llama.cpp/pull/3586

| Name | Quant method | Size |
| ---- | ---- | ---- |
| [stablelm-3b-4e1t.q2_k.gguf](https://huggingface.co/afrideva/stablelm-3b-4e1t-GGUF/resolve/main/stablelm-3b-4e1t.q2_k.gguf) | q2_k | 1.20 GB  |
| [stablelm-3b-4e1t.q3_k_m.gguf](https://huggingface.co/afrideva/stablelm-3b-4e1t-GGUF/resolve/main/stablelm-3b-4e1t.q3_k_m.gguf) | q3_k_m | 1.39 GB  |
| [stablelm-3b-4e1t.q4_k_m.gguf](https://huggingface.co/afrideva/stablelm-3b-4e1t-GGUF/resolve/main/stablelm-3b-4e1t.q4_k_m.gguf) | q4_k_m | 1.71 GB  |
| [stablelm-3b-4e1t.q5_k_m.gguf](https://huggingface.co/afrideva/stablelm-3b-4e1t-GGUF/resolve/main/stablelm-3b-4e1t.q5_k_m.gguf) | q5_k_m | 1.99 GB  |
| [stablelm-3b-4e1t.q6_k.gguf](https://huggingface.co/afrideva/stablelm-3b-4e1t-GGUF/resolve/main/stablelm-3b-4e1t.q6_k.gguf) | q6_k | 2.30 GB  |
| [stablelm-3b-4e1t.q8_0.gguf](https://huggingface.co/afrideva/stablelm-3b-4e1t-GGUF/resolve/main/stablelm-3b-4e1t.q8_0.gguf) | q8_0 | 2.97 GB  |



## Original Model Card:
# `StableLM-3B-4E1T`

## Model Description

`StableLM-3B-4E1T` is a 3 billion parameter decoder-only language model pre-trained on 1 trillion tokens of diverse English and code datasets for 4 epochs.

## Usage

Get started generating text with `StableLM-3B-4E1T` by using the following code snippet:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
model = AutoModelForCausalLM.from_pretrained(
  "stabilityai/stablelm-3b-4e1t",
  trust_remote_code=True,
  torch_dtype="auto",
)
model.cuda()
inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to("cuda")
tokens = model.generate(
  **inputs,
  max_new_tokens=64,
  temperature=0.75,
  top_p=0.95,
  do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
```

## Model Details

* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `StableLM-3B-4E1T` models are auto-regressive language models based on the transformer decoder architecture.
* **Language(s)**: English
* **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
* **License**: Model checkpoints are licensed under the Creative Commons license ([CC BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/)). Under this license, you must give [credit](https://creativecommons.org/licenses/by/4.0/#) to Stability AI, provide a link to the license, and [indicate if changes were made](https://creativecommons.org/licenses/by/4.0/#). You may do so in any reasonable manner, but not in any way that suggests the Stability AI endorses you or your use.
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`

### Model Architecture

The model is a decoder-only transformer similar to the LLaMA ([Touvron et al., 2023](https://arxiv.org/abs/2307.09288)) architecture with the following modifications:

| Parameters     | Hidden Size | Layers | Heads | Sequence Length |
|----------------|-------------|--------|-------|-----------------|
| 2,795,443,200  | 2560        | 32     | 32    | 4096            |

* **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf).
* **Normalization**: LayerNorm ([Ba et al., 2016](https://arxiv.org/abs/1607.06450)) with learned bias terms as opposed to RMSNorm ([Zhang & Sennrich, 2019](https://arxiv.org/abs/1910.07467)).
* **Tokenizer**: GPT-NeoX ([Black et al., 2022](https://arxiv.org/abs/2204.06745)).

## Training

For complete dataset and training details, please see the [StableLM-3B-4E1T Technical Report](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo).

### Training Dataset

The dataset is comprised of a filtered mixture of open-source large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): Falcon RefinedWeb extract ([Penedo et al., 2023](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)), RedPajama-Data ([Together Computer., 2023](https://github.com/togethercomputer/RedPajama-Data)) and The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)) both without the *Books3* subset, and StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)).

* Given the large amount of web data, we recommend fine-tuning the base StableLM-3B-4E1T for your downstream tasks.

### Training Procedure

The model is pre-trained on the aforementioned datasets in `bfloat16` precision, optimized with AdamW, and trained using the NeoX tokenizer with a vocabulary size of 50,257. We outline the complete hyperparameters choices in the project's [GitHub repository - config](https://github.com/Stability-AI/StableLM/blob/main/configs/stablelm-3b-4e1t.yml).

### Training Infrastructure

* **Hardware**: `StableLM-3B-4E1T` was trained on the Stability AI cluster across 256 NVIDIA A100 40GB GPUs (AWS P4d instances). Training began on August 23, 2023, and took approximately 30 days to complete.

* **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf))

## Use and Limitations

### Intended Use

The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications.

### Limitations and Bias

As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.

## How to Cite

```bibtex
@misc{StableLM-3B-4E1T,
      url={[https://huggingface.co/stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)},
      title={StableLM 3B 4E1T},
      author={Tow, Jonathan and Bellagente, Marco and Mahan, Dakota and Riquelme, Carlos}
}
```