File size: 7,937 Bytes
75a38ec 626fda7 75a38ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
---
base_model: mesolitica/malaysian-tinyllama-1.1b-16k-instructions
inference: false
language:
- ms
model_creator: mesolitica
model_name: malaysian-tinyllama-1.1b-16k-instructions
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
---
# mesolitica/malaysian-tinyllama-1.1b-16k-instructions-GGUF
Quantized GGUF model files for [malaysian-tinyllama-1.1b-16k-instructions](https://huggingface.co/mesolitica/malaysian-tinyllama-1.1b-16k-instructions) from [mesolitica](https://huggingface.co/mesolitica)
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [malaysian-tinyllama-1.1b-16k-instructions.q2_k.gguf](https://huggingface.co/afrideva/malaysian-tinyllama-1.1b-16k-instructions-GGUF/resolve/main/malaysian-tinyllama-1.1b-16k-instructions.q2_k.gguf) | q2_k | 482.14 MB |
| [malaysian-tinyllama-1.1b-16k-instructions.q3_k_m.gguf](https://huggingface.co/afrideva/malaysian-tinyllama-1.1b-16k-instructions-GGUF/resolve/main/malaysian-tinyllama-1.1b-16k-instructions.q3_k_m.gguf) | q3_k_m | 549.85 MB |
| [malaysian-tinyllama-1.1b-16k-instructions.q4_k_m.gguf](https://huggingface.co/afrideva/malaysian-tinyllama-1.1b-16k-instructions-GGUF/resolve/main/malaysian-tinyllama-1.1b-16k-instructions.q4_k_m.gguf) | q4_k_m | 667.81 MB |
| [malaysian-tinyllama-1.1b-16k-instructions.q5_k_m.gguf](https://huggingface.co/afrideva/malaysian-tinyllama-1.1b-16k-instructions-GGUF/resolve/main/malaysian-tinyllama-1.1b-16k-instructions.q5_k_m.gguf) | q5_k_m | 782.04 MB |
| [malaysian-tinyllama-1.1b-16k-instructions.q6_k.gguf](https://huggingface.co/afrideva/malaysian-tinyllama-1.1b-16k-instructions-GGUF/resolve/main/malaysian-tinyllama-1.1b-16k-instructions.q6_k.gguf) | q6_k | 903.41 MB |
| [malaysian-tinyllama-1.1b-16k-instructions.q8_0.gguf](https://huggingface.co/afrideva/malaysian-tinyllama-1.1b-16k-instructions-GGUF/resolve/main/malaysian-tinyllama-1.1b-16k-instructions.q8_0.gguf) | q8_0 | 1.17 GB |
## Original Model Card:
# Full Parameter Finetuning TinyLlama 16384 context length on Malaysian instructions dataset
README at https://github.com/mesolitica/malaya/tree/5.1/session/tiny-llama#instructions-7b-16384-context-length
We use exact Llama2 Instruct chat template, added with function call
WandB, https://wandb.ai/mesolitica/fpf-tinyllama-1.1b-hf-instructions-16k-function-call?workspace=user-husein-mesolitica
## how-to
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
def parse_llama_chat(messages, function_call = None):
system = messages[0]['content']
user_query = messages[-1]['content']
users, assistants = [], []
for q in messages[1:-1]:
if q['role'] == 'user':
users.append(q['content'])
elif q['role'] == 'assistant':
assistants.append(q['content'])
texts = [f'<s>[INST] <<SYS>>\n{system}\n<</SYS>>\n\n']
if function_call:
fs = []
for f in function_call:
f = json.dumps(f, indent=4)
fs.append(f)
fs = '\n\n'.join(fs)
texts.append(f'\n[FUNCTIONCALL]\n{fs}\n')
for u, a in zip(users, assistants):
texts.append(f'{u.strip()} [/INST] {a.strip()} </s><s>[INST] ')
texts.append(f'{user_query.strip()} [/INST]')
prompt = ''.join(texts).strip()
return prompt
TORCH_DTYPE = 'bfloat16'
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=getattr(torch, TORCH_DTYPE)
)
tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-tinyllama-1.1b-16k-instructions')
model = AutoModelForCausalLM.from_pretrained(
'mesolitica/malaysian-tinyllama-1.1b-16k-instructions',
use_flash_attention_2 = True,
quantization_config = nf4_config
)
messages = [
{'role': 'system', 'content': 'awak adalah AI yang mampu jawab segala soalan'},
{'role': 'user', 'content': 'kwsp tu apa'}
]
prompt = parse_llama_chat(messages)
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
generate_kwargs = dict(
inputs,
max_new_tokens=1024,
top_p=0.95,
top_k=50,
temperature=0.9,
do_sample=True,
num_beams=1,
)
r = model.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
```
```text
'<s> [INST] <<SYS>>
awak adalah AI yang mampu jawab segala soalan
<</SYS>>
kwsp tu apa [/INST] KWSP bermaksud Kumpulan Wang Persaraan. </s>'
```
```python
messages = [
{'role': 'system', 'content': 'awak adalah AI yang mampu jawab segala soalan'},
{'role': 'user', 'content': 'awat malaysia ada jabatan koko, malaysia bukan buat keluaq koko banyak pun'}
]
prompt = parse_llama_chat(messages)
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
generate_kwargs = dict(
inputs,
max_new_tokens=1024,
top_p=0.95,
top_k=50,
temperature=0.9,
do_sample=True,
num_beams=1,
)
r = model.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
```
```text
<s> [INST] <<SYS>>
awak adalah AI yang mampu jawab segala soalan
<</SYS>>
awat malaysia ada jabatan koko, malaysia bukan buat keluaq koko banyak pun [/INST] Jabatan ini bertanggungjawab untuk mengeluarkan dan mengagihkan produk koko ke pasaran tempatan dan antarabangsa. Mereka juga menyumbang kepada pembangunan industri koko dan memastikan penggunaan sumber asli yang bertanggungjawab. Selain itu, mereka menjalankan penyelidikan dan inovasi untuk meningkatkan proses pengeluaran dan meningkatkan daya saing produk koko. </s>
```
```python
f2 = {
'name': 'parse_entities',
'description': 'extract entities from the text',
'parameters': {
'type': 'object',
'properties': {
'drink': {
'type': 'string',
'description': 'drink name',
},
'event': {
'type': 'string',
'description': 'event name',
},
'person_name': {
'type': 'string',
'description': 'person name',
}
},
'required': [
'drink',
'event',
'person_name'
]
}
}
messages = [
{'role': 'system', 'content': 'awak adalah AI yang mampu jawab segala soalan'},
{'role': 'user', 'content': 'nama saya husein bin zolkepli, saya sekarang berada di putrajaya merdeka 2023 sambil minum teh o ais'}
]
prompt = parse_llama_chat(messages, function_call = [f2])
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
generate_kwargs = dict(
inputs,
max_new_tokens=128,
top_p=0.95,
top_k=50,
temperature=0.9,
do_sample=True,
num_beams=1,
)
r = model.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
```
```text
<s> [INST] <<SYS>>
awak adalah AI yang mampu jawab segala soalan
<</SYS>>
[FUNCTIONCALL]
{
"name": "parse_entities",
"description": "extract entities from the text",
"parameters": {
"type": "object",
"properties": {
"drink": {
"type": "string",
"description": "drink name"
},
"event": {
"type": "string",
"description": "event name"
},
"person_name": {
"type": "string",
"description": "person name"
}
},
"required": [
"drink",
"event",
"person_name"
]
}
}
nama saya husein bin zolkepli, saya sekarang berada di putrajaya merdeka 2023 sambil minum teh o ais [/INST] <functioncall> {"name": "parse_entities", "arguments": '{"drink": "teh o ais", "event": "Merdeka 2023", "person_name": "Husein bin Zolkepli"}'}
<functioncall> {"entities": [{"name": "Husein bin Zolkepli", "confidence": 0.95}]} </s>
``` |