|
--- |
|
base_model: PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T |
|
datasets: |
|
- cerebras/SlimPajama-627B |
|
- bigcode/starcoderdata |
|
inference: false |
|
language: |
|
- en |
|
license: apache-2.0 |
|
model_creator: PY007 |
|
model_name: TinyLlama-1.1B-intermediate-step-715k-1.5T |
|
quantized_by: afrideva |
|
tags: |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
--- |
|
# PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF |
|
|
|
Quantized GGUF model files for [TinyLlama-1.1B-intermediate-step-715k-1.5T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T) from [PY007](https://huggingface.co/PY007) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q2_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q2_k.gguf) | q2_k | 482.14 MB | |
|
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q3_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q3_k_m.gguf) | q3_k_m | 549.85 MB | |
|
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q4_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q4_k_m.gguf) | q4_k_m | 252.38 MB | |
|
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q5_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q5_k_m.gguf) | q5_k_m | 200.14 MB | |
|
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q6_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q6_k.gguf) | q6_k | 903.41 MB | |
|
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q8_0.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q8_0.gguf) | q8_0 | 1.17 GB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
<div align="center"> |
|
|
|
# TinyLlama-1.1B |
|
</div> |
|
|
|
https://github.com/jzhang38/TinyLlama |
|
|
|
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01. |
|
|
|
<div align="center"> |
|
<img src="./TinyLlama_logo.png" width="300"/> |
|
</div> |
|
|
|
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. |
|
|
|
#### This Model |
|
This is an intermediate checkpoint with 715K steps and 1.49T tokens. **We suggest you not use this directly for inference.** |
|
|
|
|
|
#### How to use |
|
You will need the transformers>=4.31 |
|
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. |
|
``` |
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
model = "PY007/TinyLlama-1.1B-intermediate-step-240k-503b" |
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
sequences = pipeline( |
|
'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01.', |
|
do_sample=True, |
|
top_k=10, |
|
num_return_sequences=1, |
|
repetition_penalty=1.5, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_length=500, |
|
) |
|
for seq in sequences: |
|
print(f"Result: {seq['generated_text']}") |
|
``` |
|
|
|
#### Eval |
|
| Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg | |
|
|-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----| |
|
| Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 | |
|
| TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80| 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11| |
|
| TinyLlama-1.1B-intermediate-step-240k-503b| 503B | 49.56 |31.40 |55.80 |26.54 |48.32 |56.91 |69.42 | 48.28 | |
|
| TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 | |
|
| TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.49T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 | |