afrideva's picture
Create README.md
aa6cf96
|
raw
history blame
4.87 kB
---
base_model: PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
inference: false
language:
- en
license: apache-2.0
model_creator: PY007
model_name: TinyLlama-1.1B-intermediate-step-715k-1.5T
quantized_by: afrideva
tags:
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
---
# PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF
Quantized GGUF model files for [TinyLlama-1.1B-intermediate-step-715k-1.5T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T) from [PY007](https://huggingface.co/PY007)
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q2_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q2_k.gguf) | q2_k | 482.14 MB |
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q3_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q3_k_m.gguf) | q3_k_m | 549.85 MB |
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q4_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q4_k_m.gguf) | q4_k_m | 252.38 MB |
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q5_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q5_k_m.gguf) | q5_k_m | 200.14 MB |
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q6_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q6_k.gguf) | q6_k | 903.41 MB |
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q8_0.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q8_0.gguf) | q8_0 | 1.17 GB |
## Original Model Card:
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.
<div align="center">
<img src="./TinyLlama_logo.png" width="300"/>
</div>
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Model
This is an intermediate checkpoint with 715K steps and 1.49T tokens. **We suggest you not use this directly for inference.**
#### How to use
You will need the transformers>=4.31
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
```
from transformers import AutoTokenizer
import transformers
import torch
model = "PY007/TinyLlama-1.1B-intermediate-step-240k-503b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.',
do_sample=True,
top_k=10,
num_return_sequences=1,
repetition_penalty=1.5,
eos_token_id=tokenizer.eos_token_id,
max_length=500,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
#### Eval
| Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
|-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----|
| Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
| TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80| 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11|
| TinyLlama-1.1B-intermediate-step-240k-503b| 503B | 49.56 |31.40 |55.80 |26.54 |48.32 |56.91 |69.42 | 48.28 |
| TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
| TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.49T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |