Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T
|
3 |
+
datasets:
|
4 |
+
- cerebras/SlimPajama-627B
|
5 |
+
- bigcode/starcoderdata
|
6 |
+
inference: false
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
license: apache-2.0
|
10 |
+
model_creator: PY007
|
11 |
+
model_name: TinyLlama-1.1B-intermediate-step-715k-1.5T
|
12 |
+
quantized_by: afrideva
|
13 |
+
tags:
|
14 |
+
- gguf
|
15 |
+
- ggml
|
16 |
+
- quantized
|
17 |
+
- q2_k
|
18 |
+
- q3_k_m
|
19 |
+
- q4_k_m
|
20 |
+
- q5_k_m
|
21 |
+
- q6_k
|
22 |
+
- q8_0
|
23 |
+
---
|
24 |
+
# PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF
|
25 |
+
|
26 |
+
Quantized GGUF model files for [TinyLlama-1.1B-intermediate-step-715k-1.5T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T) from [PY007](https://huggingface.co/PY007)
|
27 |
+
|
28 |
+
|
29 |
+
| Name | Quant method | Size |
|
30 |
+
| ---- | ---- | ---- |
|
31 |
+
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q2_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q2_k.gguf) | q2_k | 482.14 MB |
|
32 |
+
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q3_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q3_k_m.gguf) | q3_k_m | 549.85 MB |
|
33 |
+
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q4_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q4_k_m.gguf) | q4_k_m | 252.38 MB |
|
34 |
+
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q5_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q5_k_m.gguf) | q5_k_m | 200.14 MB |
|
35 |
+
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q6_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q6_k.gguf) | q6_k | 903.41 MB |
|
36 |
+
| [tinyllama-1.1b-intermediate-step-715k-1.5t.q8_0.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q8_0.gguf) | q8_0 | 1.17 GB |
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
## Original Model Card:
|
41 |
+
<div align="center">
|
42 |
+
|
43 |
+
# TinyLlama-1.1B
|
44 |
+
</div>
|
45 |
+
|
46 |
+
https://github.com/jzhang38/TinyLlama
|
47 |
+
|
48 |
+
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01.
|
49 |
+
|
50 |
+
<div align="center">
|
51 |
+
<img src="./TinyLlama_logo.png" width="300"/>
|
52 |
+
</div>
|
53 |
+
|
54 |
+
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
|
55 |
+
|
56 |
+
#### This Model
|
57 |
+
This is an intermediate checkpoint with 715K steps and 1.49T tokens. **We suggest you not use this directly for inference.**
|
58 |
+
|
59 |
+
|
60 |
+
#### How to use
|
61 |
+
You will need the transformers>=4.31
|
62 |
+
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
|
63 |
+
```
|
64 |
+
from transformers import AutoTokenizer
|
65 |
+
import transformers
|
66 |
+
import torch
|
67 |
+
model = "PY007/TinyLlama-1.1B-intermediate-step-240k-503b"
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
69 |
+
pipeline = transformers.pipeline(
|
70 |
+
"text-generation",
|
71 |
+
model=model,
|
72 |
+
torch_dtype=torch.float16,
|
73 |
+
device_map="auto",
|
74 |
+
)
|
75 |
+
|
76 |
+
sequences = pipeline(
|
77 |
+
'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01.',
|
78 |
+
do_sample=True,
|
79 |
+
top_k=10,
|
80 |
+
num_return_sequences=1,
|
81 |
+
repetition_penalty=1.5,
|
82 |
+
eos_token_id=tokenizer.eos_token_id,
|
83 |
+
max_length=500,
|
84 |
+
)
|
85 |
+
for seq in sequences:
|
86 |
+
print(f"Result: {seq['generated_text']}")
|
87 |
+
```
|
88 |
+
|
89 |
+
#### Eval
|
90 |
+
| Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
|
91 |
+
|-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----|
|
92 |
+
| Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
|
93 |
+
| TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80| 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11|
|
94 |
+
| TinyLlama-1.1B-intermediate-step-240k-503b| 503B | 49.56 |31.40 |55.80 |26.54 |48.32 |56.91 |69.42 | 48.28 |
|
95 |
+
| TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
|
96 |
+
| TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.49T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |
|