afrideva commited on
Commit
aa6cf96
β€’
1 Parent(s): 5706aee

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ inference: false
7
+ language:
8
+ - en
9
+ license: apache-2.0
10
+ model_creator: PY007
11
+ model_name: TinyLlama-1.1B-intermediate-step-715k-1.5T
12
+ quantized_by: afrideva
13
+ tags:
14
+ - gguf
15
+ - ggml
16
+ - quantized
17
+ - q2_k
18
+ - q3_k_m
19
+ - q4_k_m
20
+ - q5_k_m
21
+ - q6_k
22
+ - q8_0
23
+ ---
24
+ # PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF
25
+
26
+ Quantized GGUF model files for [TinyLlama-1.1B-intermediate-step-715k-1.5T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T) from [PY007](https://huggingface.co/PY007)
27
+
28
+
29
+ | Name | Quant method | Size |
30
+ | ---- | ---- | ---- |
31
+ | [tinyllama-1.1b-intermediate-step-715k-1.5t.q2_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q2_k.gguf) | q2_k | 482.14 MB |
32
+ | [tinyllama-1.1b-intermediate-step-715k-1.5t.q3_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q3_k_m.gguf) | q3_k_m | 549.85 MB |
33
+ | [tinyllama-1.1b-intermediate-step-715k-1.5t.q4_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q4_k_m.gguf) | q4_k_m | 252.38 MB |
34
+ | [tinyllama-1.1b-intermediate-step-715k-1.5t.q5_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q5_k_m.gguf) | q5_k_m | 200.14 MB |
35
+ | [tinyllama-1.1b-intermediate-step-715k-1.5t.q6_k.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q6_k.gguf) | q6_k | 903.41 MB |
36
+ | [tinyllama-1.1b-intermediate-step-715k-1.5t.q8_0.gguf](https://huggingface.co/afrideva/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF/resolve/main/tinyllama-1.1b-intermediate-step-715k-1.5t.q8_0.gguf) | q8_0 | 1.17 GB |
37
+
38
+
39
+
40
+ ## Original Model Card:
41
+ <div align="center">
42
+
43
+ # TinyLlama-1.1B
44
+ </div>
45
+
46
+ https://github.com/jzhang38/TinyLlama
47
+
48
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.
49
+
50
+ <div align="center">
51
+ <img src="./TinyLlama_logo.png" width="300"/>
52
+ </div>
53
+
54
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
55
+
56
+ #### This Model
57
+ This is an intermediate checkpoint with 715K steps and 1.49T tokens. **We suggest you not use this directly for inference.**
58
+
59
+
60
+ #### How to use
61
+ You will need the transformers>=4.31
62
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
63
+ ```
64
+ from transformers import AutoTokenizer
65
+ import transformers
66
+ import torch
67
+ model = "PY007/TinyLlama-1.1B-intermediate-step-240k-503b"
68
+ tokenizer = AutoTokenizer.from_pretrained(model)
69
+ pipeline = transformers.pipeline(
70
+ "text-generation",
71
+ model=model,
72
+ torch_dtype=torch.float16,
73
+ device_map="auto",
74
+ )
75
+
76
+ sequences = pipeline(
77
+ 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.',
78
+ do_sample=True,
79
+ top_k=10,
80
+ num_return_sequences=1,
81
+ repetition_penalty=1.5,
82
+ eos_token_id=tokenizer.eos_token_id,
83
+ max_length=500,
84
+ )
85
+ for seq in sequences:
86
+ print(f"Result: {seq['generated_text']}")
87
+ ```
88
+
89
+ #### Eval
90
+ | Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
91
+ |-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----|
92
+ | Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
93
+ | TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80| 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11|
94
+ | TinyLlama-1.1B-intermediate-step-240k-503b| 503B | 49.56 |31.40 |55.80 |26.54 |48.32 |56.91 |69.42 | 48.28 |
95
+ | TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
96
+ | TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.49T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |