afrideva's picture
Create README.md
aa6cf96
|
raw
history blame
4.87 kB
metadata
base_model: PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T
datasets:
  - cerebras/SlimPajama-627B
  - bigcode/starcoderdata
inference: false
language:
  - en
license: apache-2.0
model_creator: PY007
model_name: TinyLlama-1.1B-intermediate-step-715k-1.5T
quantized_by: afrideva
tags:
  - gguf
  - ggml
  - quantized
  - q2_k
  - q3_k_m
  - q4_k_m
  - q5_k_m
  - q6_k
  - q8_0

PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T-GGUF

Quantized GGUF model files for TinyLlama-1.1B-intermediate-step-715k-1.5T from PY007

Original Model Card:

TinyLlama-1.1B

https://github.com/jzhang38/TinyLlama

The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.

We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.

This Model

This is an intermediate checkpoint with 715K steps and 1.49T tokens. We suggest you not use this directly for inference.

How to use

You will need the transformers>=4.31 Do check the TinyLlama github page for more information.

from transformers import AutoTokenizer
import transformers 
import torch
model = "PY007/TinyLlama-1.1B-intermediate-step-240k-503b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

sequences = pipeline(
    'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.',
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    repetition_penalty=1.5,
    eos_token_id=tokenizer.eos_token_id,
    max_length=500,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

Eval

Model Pretrain Tokens HellaSwag Obqa WinoGrande ARC_c ARC_e boolq piqa avg
Pythia-1.0B 300B 47.16 31.40 53.43 27.05 48.99 60.83 69.21 48.30
TinyLlama-1.1B-intermediate-step-50K-104b 103B 43.50 29.80 53.28 24.32 44.91 59.66 67.30 46.11
TinyLlama-1.1B-intermediate-step-240k-503b 503B 49.56 31.40 55.80 26.54 48.32 56.91 69.42 48.28
TinyLlama-1.1B-intermediate-step-480k-1007B 1007B 52.54 33.40 55.96 27.82 52.36 59.54 69.91 50.22
TinyLlama-1.1B-intermediate-step-715k-1.5T 1.49T 53.68 35.20 58.33 29.18 51.89 59.08 71.65 51.29