File size: 2,412 Bytes
f1e71ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- indonlu
metrics:
- accuracy
- f1
model-index:
- name: indobert-distilled-optimized-for-classification
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: indonlu
type: indonlu
args: smsa
metrics:
- name: Accuracy
type: accuracy
value: 0.9023809523809524
- name: F1
type: f1
value: 0.9020516403647337
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indobert-distilled-optimized-for-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the indonlu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5991
- Accuracy: 0.9024
- F1: 0.9021
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.262995179171344e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.2938 | 1.0 | 688 | 0.8433 | 0.8484 | 0.8513 |
| 0.711 | 2.0 | 1376 | 0.6408 | 0.8881 | 0.8878 |
| 0.4416 | 3.0 | 2064 | 0.7964 | 0.8794 | 0.8793 |
| 0.2907 | 4.0 | 2752 | 0.7559 | 0.8897 | 0.8900 |
| 0.2065 | 5.0 | 3440 | 0.6892 | 0.8968 | 0.8974 |
| 0.1574 | 6.0 | 4128 | 0.6881 | 0.8913 | 0.8906 |
| 0.1131 | 7.0 | 4816 | 0.6224 | 0.8984 | 0.8982 |
| 0.0865 | 8.0 | 5504 | 0.6312 | 0.8976 | 0.8970 |
| 0.0678 | 9.0 | 6192 | 0.6187 | 0.8992 | 0.8989 |
| 0.0526 | 10.0 | 6880 | 0.5991 | 0.9024 | 0.9021 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|