update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- indonlu
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: indobert-distilled-optimized-for-classification
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: indonlu
|
18 |
+
type: indonlu
|
19 |
+
args: smsa
|
20 |
+
metrics:
|
21 |
+
- name: Accuracy
|
22 |
+
type: accuracy
|
23 |
+
value: 0.9023809523809524
|
24 |
+
- name: F1
|
25 |
+
type: f1
|
26 |
+
value: 0.9020516403647337
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# indobert-distilled-optimized-for-classification
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the indonlu dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.5991
|
37 |
+
- Accuracy: 0.9024
|
38 |
+
- F1: 0.9021
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 5.262995179171344e-05
|
58 |
+
- train_batch_size: 16
|
59 |
+
- eval_batch_size: 16
|
60 |
+
- seed: 33
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 10
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
69 |
+
| 1.2938 | 1.0 | 688 | 0.8433 | 0.8484 | 0.8513 |
|
70 |
+
| 0.711 | 2.0 | 1376 | 0.6408 | 0.8881 | 0.8878 |
|
71 |
+
| 0.4416 | 3.0 | 2064 | 0.7964 | 0.8794 | 0.8793 |
|
72 |
+
| 0.2907 | 4.0 | 2752 | 0.7559 | 0.8897 | 0.8900 |
|
73 |
+
| 0.2065 | 5.0 | 3440 | 0.6892 | 0.8968 | 0.8974 |
|
74 |
+
| 0.1574 | 6.0 | 4128 | 0.6881 | 0.8913 | 0.8906 |
|
75 |
+
| 0.1131 | 7.0 | 4816 | 0.6224 | 0.8984 | 0.8982 |
|
76 |
+
| 0.0865 | 8.0 | 5504 | 0.6312 | 0.8976 | 0.8970 |
|
77 |
+
| 0.0678 | 9.0 | 6192 | 0.6187 | 0.8992 | 0.8989 |
|
78 |
+
| 0.0526 | 10.0 | 6880 | 0.5991 | 0.9024 | 0.9021 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.18.0
|
84 |
+
- Pytorch 1.10.0+cu111
|
85 |
+
- Datasets 2.1.0
|
86 |
+
- Tokenizers 0.12.1
|