File size: 2,420 Bytes
baf8065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fine-tuned-IndoNLI-Augmented-with-indobert-base-uncased
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-IndoNLI-Augmented-with-indobert-base-uncased

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9276
- Accuracy: 0.8014

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 16

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.6316        | 1.0   | 6298   | 0.6317          | 0.7414   |
| 0.5501        | 2.0   | 12596  | 0.5378          | 0.7888   |
| 0.4978        | 3.0   | 18894  | 0.5407          | 0.7948   |
| 0.4193        | 4.0   | 25192  | 0.5259          | 0.8013   |
| 0.3766        | 5.0   | 31490  | 0.5447          | 0.8042   |
| 0.328         | 6.0   | 37788  | 0.5820          | 0.8023   |
| 0.2792        | 7.0   | 44086  | 0.6435          | 0.8012   |
| 0.261         | 8.0   | 50384  | 0.6578          | 0.8008   |
| 0.2071        | 9.0   | 56682  | 0.7064          | 0.8052   |
| 0.2004        | 10.0  | 62980  | 0.7446          | 0.8013   |
| 0.1657        | 11.0  | 69278  | 0.7735          | 0.8044   |
| 0.1729        | 12.0  | 75576  | 0.8078          | 0.8027   |
| 0.1399        | 13.0  | 81874  | 0.8660          | 0.8010   |
| 0.132         | 14.0  | 88172  | 0.8871          | 0.8006   |
| 0.1218        | 15.0  | 94470  | 0.9182          | 0.8001   |
| 0.1066        | 16.0  | 100768 | 0.9276          | 0.8014   |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2