afaji commited on
Commit
baf8065
·
1 Parent(s): a203b29

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: fine-tuned-IndoNLI-Augmented-with-indobert-base-uncased
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # fine-tuned-IndoNLI-Augmented-with-indobert-base-uncased
16
+
17
+ This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.9276
20
+ - Accuracy: 0.8014
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 64
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_ratio: 0.06
46
+ - num_epochs: 16
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|
52
+ | 0.6316 | 1.0 | 6298 | 0.6317 | 0.7414 |
53
+ | 0.5501 | 2.0 | 12596 | 0.5378 | 0.7888 |
54
+ | 0.4978 | 3.0 | 18894 | 0.5407 | 0.7948 |
55
+ | 0.4193 | 4.0 | 25192 | 0.5259 | 0.8013 |
56
+ | 0.3766 | 5.0 | 31490 | 0.5447 | 0.8042 |
57
+ | 0.328 | 6.0 | 37788 | 0.5820 | 0.8023 |
58
+ | 0.2792 | 7.0 | 44086 | 0.6435 | 0.8012 |
59
+ | 0.261 | 8.0 | 50384 | 0.6578 | 0.8008 |
60
+ | 0.2071 | 9.0 | 56682 | 0.7064 | 0.8052 |
61
+ | 0.2004 | 10.0 | 62980 | 0.7446 | 0.8013 |
62
+ | 0.1657 | 11.0 | 69278 | 0.7735 | 0.8044 |
63
+ | 0.1729 | 12.0 | 75576 | 0.8078 | 0.8027 |
64
+ | 0.1399 | 13.0 | 81874 | 0.8660 | 0.8010 |
65
+ | 0.132 | 14.0 | 88172 | 0.8871 | 0.8006 |
66
+ | 0.1218 | 15.0 | 94470 | 0.9182 | 0.8001 |
67
+ | 0.1066 | 16.0 | 100768 | 0.9276 | 0.8014 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.26.1
73
+ - Pytorch 1.13.1+cu117
74
+ - Datasets 2.2.0
75
+ - Tokenizers 0.13.2