fine-tuned-DatasetQAS-Squad-ID-with-indobert-large-p2-without-ITTL-without-freeze-LR-1e-05
This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7843
- Exact Match: 45.4462
- F1: 62.3862
- Precision: 63.7620
- Recall: 67.9874
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.7808 | 0.5 | 1024 | 1.8192 | 39.1225 | 56.2210 | 57.3004 | 64.1431 |
1.598 | 1.0 | 2048 | 1.6753 | 42.0808 | 59.2251 | 60.4591 | 66.8518 |
1.4195 | 1.5 | 3072 | 1.6611 | 43.5599 | 60.7862 | 62.5640 | 66.8640 |
1.4262 | 2.0 | 4096 | 1.6420 | 45.0474 | 62.2214 | 63.9056 | 67.8747 |
1.1907 | 2.5 | 5120 | 1.6686 | 44.6319 | 61.3804 | 62.6910 | 68.0916 |
1.2017 | 3.0 | 6144 | 1.6597 | 45.4130 | 62.6561 | 63.9677 | 68.6391 |
1.0831 | 3.5 | 7168 | 1.7486 | 45.3714 | 62.2018 | 63.5154 | 68.2643 |
1.0256 | 4.0 | 8192 | 1.6899 | 45.6955 | 62.5503 | 64.2337 | 67.9408 |
0.9378 | 4.5 | 9216 | 1.7843 | 45.4462 | 62.3862 | 63.7620 | 67.9874 |
Framework versions
- Transformers 4.27.0
- Pytorch 2.0.0+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2
- Downloads last month
- 4