File size: 11,073 Bytes
ae934ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import re
def section_text(text):
"""
Source: https://github.com/MIT-LCP/mimic-cxr/blob/master/LICENSE
"""
"""Splits text into sections.
Assumes text is in a radiology report format, e.g.:
COMPARISON: Chest radiograph dated XYZ.
IMPRESSION: ABC...
Given text like this, it will output text from each section,
where the section type is determined by the all caps header.
Returns a three element tuple:
sections - list containing the text of each section
section_names - a normalized version of the section name
section_idx - list of start indices of the text in the section
"""
p_section = re.compile(
r'\n ([A-Z ()/,-]+):\s', re.DOTALL)
sections = list()
section_names = list()
section_idx = list()
idx = 0
s = p_section.search(text, idx)
if s:
sections.append(text[0:s.start(1)])
section_names.append('preamble')
section_idx.append(0)
while s:
current_section = s.group(1).lower()
# get the start of the text for this section
idx_start = s.end()
# skip past the first newline to avoid some bad parses
idx_skip = text[idx_start:].find('\n')
if idx_skip == -1:
idx_skip = 0
s = p_section.search(text, idx_start + idx_skip)
if s is None:
idx_end = len(text)
else:
idx_end = s.start()
sections.append(text[idx_start:idx_end])
section_names.append(current_section)
section_idx.append(idx_start)
else:
sections.append(text)
section_names.append('full report')
section_idx.append(0)
section_names = normalize_section_names(section_names)
# remove empty sections
# this handles when the report starts with a finding-like statement
# .. but this statement is not a section, more like a report title
# e.g. p10/p10103318/s57408307
# CHEST, PA LATERAL:
#
# INDICATION: This is the actual section ....
# it also helps when there are multiple findings sections
# usually one is empty
for i in reversed(range(len(section_names))):
if section_names[i] in ('impression', 'findings'):
if sections[i].strip() == '':
sections.pop(i)
section_names.pop(i)
section_idx.pop(i)
if ('impression' not in section_names) & ('findings' not in section_names):
# create a new section for the final paragraph
if '\n \n' in sections[-1]:
sections.append('\n \n'.join(sections[-1].split('\n \n')[1:]))
sections[-2] = sections[-2].split('\n \n')[0]
section_names.append('last_paragraph')
section_idx.append(section_idx[-1] + len(sections[-2]))
return sections, section_names, section_idx
def normalize_section_names(section_names):
"""
Source: https://github.com/MIT-LCP/mimic-cxr/blob/master/LICENSE
"""
# first, lower case all
section_names = [s.lower().strip() for s in section_names]
frequent_sections = {
"preamble": "preamble", # 227885
"impression": "impression", # 187759
"comparison": "comparison", # 154647
"indication": "indication", # 153730
"findings": "findings", # 149842
"examination": "examination", # 94094
"technique": "technique", # 81402
"history": "history", # 45624
"comparisons": "comparison", # 8686
"clinical history": "history", # 7121
"reason for examination": "indication", # 5845
"notification": "notification", # 5749
"reason for exam": "indication", # 4430
"clinical information": "history", # 4024
"exam": "examination", # 3907
"clinical indication": "indication", # 1945
"conclusion": "impression", # 1802
"chest, two views": "findings", # 1735
"recommendation(s)": "recommendations", # 1700
"type of examination": "examination", # 1678
"reference exam": "comparison", # 347
"patient history": "history", # 251
"addendum": "addendum", # 183
"comparison exam": "comparison", # 163
"date": "date", # 108
"comment": "comment", # 88
"findings and impression": "impression", # 87
"wet read": "wet read", # 83
"comparison film": "comparison", # 79
"recommendations": "recommendations", # 72
"findings/impression": "impression", # 47
"pfi": "history",
'recommendation': 'recommendations',
'wetread': 'wet read',
'ndication': 'impression', # 1
'impresson': 'impression', # 2
'imprression': 'impression', # 1
'imoression': 'impression', # 1
'impressoin': 'impression', # 1
'imprssion': 'impression', # 1
'impresion': 'impression', # 1
'imperssion': 'impression', # 1
'mpression': 'impression', # 1
'impession': 'impression', # 3
'findings/ impression': 'impression', # ,1
'finding': 'findings', # ,8
'findins': 'findings',
'findindgs': 'findings', # ,1
'findgings': 'findings', # ,1
'findngs': 'findings', # ,1
'findnings': 'findings', # ,1
'finidngs': 'findings', # ,2
'idication': 'indication', # ,1
'reference findings': 'findings', # ,1
'comparision': 'comparison', # ,2
'comparsion': 'comparison', # ,1
'comparrison': 'comparison', # ,1
'comparisions': 'comparison' # ,1
}
p_findings = [
'chest',
'portable',
'pa and lateral',
'lateral and pa',
'ap and lateral',
'lateral and ap',
'frontal and',
'two views',
'frontal view',
'pa view',
'ap view',
'one view',
'lateral view',
'bone window',
'frontal upright',
'frontal semi-upright',
'ribs',
'pa and lat'
]
p_findings = re.compile('({})'.format('|'.join(p_findings)))
main_sections = [
'impression', 'findings', 'history', 'comparison',
'addendum'
]
for i, s in enumerate(section_names):
if s in frequent_sections:
section_names[i] = frequent_sections[s]
continue
main_flag = False
for m in main_sections:
if m in s:
section_names[i] = m
main_flag = True
break
if main_flag:
continue
m = p_findings.search(s)
if m is not None:
section_names[i] = 'findings'
# if it looks like it is describing the entire study
# it's equivalent to findings
# group similar phrasings for impression
return section_names
def custom_mimic_cxr_rules():
"""
Source: https://github.com/MIT-LCP/mimic-cxr/blob/master/LICENSE
"""
custom_section_names = {
's50913680': 'recommendations', # files/p11/p11851243/s50913680.txt
's59363654': 'examination', # files/p12/p12128253/s59363654.txt
's59279892': 'technique', # files/p13/p13150370/s59279892.txt
's59768032': 'recommendations', # files/p13/p13249077/s59768032.txt
's57936451': 'indication', # files/p14/p14325424/s57936451.txt
's50058765': 'indication', # files/p14/p14731346/s50058765.txt
's53356173': 'examination', # files/p15/p15898350/s53356173.txt
's53202765': 'technique', # files/p16/p16076182/s53202765.txt
's50808053': 'technique', # files/p16/p16631485/s50808053.txt
's51966317': 'indication', # files/p10/p10817099/s51966317.txt
's50743547': 'examination', # files/p11/p11388341/s50743547.txt
's56451190': 'note', # files/p11/p11842879/s56451190.txt
's59067458': 'recommendations', # files/p11/p11984647/s59067458.txt
's59215320': 'examination', # files/p12/p12408912/s59215320.txt
's55124749': 'indication', # files/p12/p12428492/s55124749.txt
's54365831': 'indication', # files/p13/p13876470/s54365831.txt
's59087630': 'recommendations', # files/p14/p14267880/s59087630.txt
's58157373': 'recommendations', # files/p15/p15032392/s58157373.txt
's56482935': 'recommendations', # files/p15/p15388421/s56482935.txt
's58375018': 'recommendations', # files/p15/p15505556/s58375018.txt
's54654948': 'indication', # files/p17/p17090359/s54654948.txt
's55157853': 'examination', # files/p18/p18975498/s55157853.txt
's51491012': 'history', # files/p19/p19314266/s51491012.txt
}
custom_indices = {
's50525523': [201, 349], # files/p10/p10602608/s50525523.txt
's57564132': [233, 554], # files/p10/p10637168/s57564132.txt
's59982525': [313, 717], # files/p11/p11989982/s59982525.txt
's53488209': [149, 475], # files/p12/p12458657/s53488209.txt
's54875119': [234, 988], # files/p13/p13687044/s54875119.txt
's50196495': [59, 399], # files/p13/p13894879/s50196495.txt
's56579911': [59, 218], # files/p15/p15394326/s56579911.txt
's52648681': [292, 631], # files/p15/p15666238/s52648681.txt
's59889364': [172, 453], # files/p15/p15835529/s59889364.txt
's53514462': [73, 377], # files/p16/p16297706/s53514462.txt
's59505494': [59, 450], # files/p16/p16730991/s59505494.txt
's53182247': [59, 412], # files/p16/p16770442/s53182247.txt
's51410602': [47, 320], # files/p17/p17069955/s51410602.txt
's56412866': [522, 822], # files/p17/p17612000/s56412866.txt
's54986978': [59, 306], # files/p17/p17912487/s54986978.txt
's59003148': [262, 505], # files/p17/p17916384/s59003148.txt
's57150433': [61, 394], # files/p18/p18335791/s57150433.txt
's56760320': [219, 457], # files/p18/p18418794/s56760320.txt
's59562049': [158, 348], # files/p18/p18502016/s59562049.txt
's52674888': [145, 296], # files/p19/p19381919/s52674888.txt
's55258338': [192, 568], # files/p13/p13719117/s55258338.txt
's59330497': [140, 655], # files/p15/p15479218/s59330497.txt
's52119491': [179, 454], # files/p17/p17959278/s52119491.txt
# below have no findings at all in the entire report
's58235663': [0, 0], # files/p11/p11573679/s58235663.txt
's50798377': [0, 0], # files/p12/p12632853/s50798377.txt
's54168089': [0, 0], # files/p14/p14463099/s54168089.txt
's53071062': [0, 0], # files/p15/p15774521/s53071062.txt
's56724958': [0, 0], # files/p16/p16175671/s56724958.txt
's54231141': [0, 0], # files/p16/p16312859/s54231141.txt
's53607029': [0, 0], # files/p17/p17603668/s53607029.txt
's52035334': [0, 0], # files/p19/p19349312/s52035334.txt
}
return custom_section_names, custom_indices
|