File size: 5,239 Bytes
1d5e0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from dataclasses import dataclass, field
from typing import Optional

import torch

from transformers import AutoTokenizer, HfArgumentParser, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer

@dataclass
class ScriptArguments:
    """
    These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train.
    """
    per_device_train_batch_size: Optional[int] = field(default=4)
    per_device_eval_batch_size: Optional[int] = field(default=1)
    gradient_accumulation_steps: Optional[int] = field(default=4)
    learning_rate: Optional[float] = field(default=2e-4)
    max_grad_norm: Optional[float] = field(default=0.3)
    weight_decay: Optional[int] = field(default=0.001)
    lora_alpha: Optional[int] = field(default=16)
    lora_dropout: Optional[float] = field(default=0.1)
    lora_r: Optional[int] = field(default=8)
    max_seq_length: Optional[int] = field(default=2048)
    model_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc."
        }
    )
    dataset_name: Optional[str] = field(
        default="stingning/ultrachat",
        metadata={"help": "The preference dataset to use."},
    )
    fp16: Optional[bool] = field(
        default=False,
        metadata={"help": "Enables fp16 training."},
    )
    bf16: Optional[bool] = field(
        default=False,
        metadata={"help": "Enables bf16 training."},
    )
    packing: Optional[bool] = field(
        default=True,
        metadata={"help": "Use packing dataset creating."},
    )
    gradient_checkpointing: Optional[bool] = field(
        default=True,
        metadata={"help": "Enables gradient checkpointing."},
    )
    use_flash_attention_2: Optional[bool] = field(
        default=False,
        metadata={"help": "Enables Flash Attention 2."},
    )
    optim: Optional[str] = field(
        default="paged_adamw_32bit",
        metadata={"help": "The optimizer to use."},
    )
    lr_scheduler_type: str = field(
        default="constant",
        metadata={"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"},
    )
    max_steps: int = field(default=1000, metadata={"help": "How many optimizer update steps to take"})
    warmup_ratio: float = field(default=0.03, metadata={"help": "Fraction of steps to do a warmup for"})
    save_steps: int = field(default=10, metadata={"help": "Save checkpoint every X updates steps."})
    logging_steps: int = field(default=10, metadata={"help": "Log every X updates steps."})
    output_dir: str = field(
        default="./results",
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )

parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]


def formatting_func(example):
    text = f"### USER: {example['data'][0]}\n### ASSISTANT: {example['data'][1]}"
    return text

# Load the GG model - this is the local one, update it to the one on the Hub
model_id = "google/gemma-7b"

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4"
)

# Load model
model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    quantization_config=quantization_config, 
    torch_dtype=torch.float32,
    attn_implementation="sdpa" if not script_args.use_flash_attention_2 else "flash_attention_2"
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id

lora_config = LoraConfig(
    r=script_args.lora_r,
    target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
    bias="none",
    task_type="CAUSAL_LM",
    lora_alpha=script_args.lora_alpha,
    lora_dropout=script_args.lora_dropout
)

train_dataset = load_dataset(script_args.dataset_name, split="train[:5%]")

# TODO: make that configurable
YOUR_HF_USERNAME = xxx
output_dir = f"{YOUR_HF_USERNAME}/gemma-qlora-ultrachat"

training_arguments = TrainingArguments(
    output_dir=output_dir,
    per_device_train_batch_size=script_args.per_device_train_batch_size,
    gradient_accumulation_steps=script_args.gradient_accumulation_steps,
    optim=script_args.optim,
    save_steps=script_args.save_steps,
    logging_steps=script_args.logging_steps,
    learning_rate=script_args.learning_rate,
    max_grad_norm=script_args.max_grad_norm,
    max_steps=script_args.max_steps,
    warmup_ratio=script_args.warmup_ratio,
    lr_scheduler_type=script_args.lr_scheduler_type,
    gradient_checkpointing=script_args.gradient_checkpointing,
    fp16=script_args.fp16,
    bf16=script_args.bf16,
)

trainer = SFTTrainer(
    model=model,
    args=training_arguments,
    train_dataset=train_dataset,
    peft_config=lora_config,
    packing=script_args.packing,
    dataset_text_field="id",
    tokenizer=tokenizer,
    max_seq_length=script_args.max_seq_length,
    formatting_func=formatting_func,
)

trainer.train()