Adrian Saez Martinez PRO

adriszmar
Β·

AI & ML interests

LLM - NLP en espaΓ±ol

Recent Activity

updated a Space about 1 month ago
adriszmar/MeetingDemo
updated a model about 1 month ago
adriszmar/Qwen2.5-Math-7B-Instruct-AWQ
updated a model about 1 month ago
adriszmar/QAIMath-Qwen2.5-7B-TIES
View all activity

Organizations

SomosNLP's profile picture

adriszmar's activity

updated a Space about 1 month ago
reacted to ImranzamanML's post with πŸ‘ about 2 months ago
view post
Post
1356
Here is how we can calculate the size of any LLM model:

Each parameter in LLM models is typically stored as a floating-point number. The size of each parameter in bytes depends on the precision.

32-bit precision: Each parameter takes 4 bytes.
16-bit precision: Each parameter takes 2 bytes

To calculate the total memory usage of the model:
Memory usage (in bytes) = No. of Parameters Γ— Size of Each Parameter

For example:
32-bit Precision (FP32)
In 32-bit floating-point precision, each parameter takes 4 bytes.
Memory usage in bytes = 1 billion parameters Γ— 4 bytes
1,000,000,000 Γ— 4 = 4,000,000,000 bytes
In gigabytes: β‰ˆ 3.73 GB

16-bit Precision (FP16)
In 16-bit floating-point precision, each parameter takes 2 bytes.
Memory usage in bytes = 1 billion parameters Γ— 2 bytes
1,000,000,000 Γ— 2 = 2,000,000,000 bytes
In gigabytes: β‰ˆ 1.86 GB

It depends on whether you use 32-bit or 16-bit precision, a model with 1 billion parameters would use approximately 3.73 GB or 1.86 GB of memory, respectively.
updated a Space 6 months ago