SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges2608bai-4ep")
# Run inference
sentences = [
"Els membres de la Corporació tenen dret a obtenir dels òrgans de l'Ajuntament les dades o informacions...",
"Quin és el paper dels òrgans de l'Ajuntament en relació amb les sol·licituds dels membres de la Corporació?",
'Quin és el benefici de la presentació de recursos?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0754 |
cosine_accuracy@3 | 0.1444 |
cosine_accuracy@5 | 0.2134 |
cosine_accuracy@10 | 0.3901 |
cosine_precision@1 | 0.0754 |
cosine_precision@3 | 0.0481 |
cosine_precision@5 | 0.0427 |
cosine_precision@10 | 0.039 |
cosine_recall@1 | 0.0754 |
cosine_recall@3 | 0.1444 |
cosine_recall@5 | 0.2134 |
cosine_recall@10 | 0.3901 |
cosine_ndcg@10 | 0.1978 |
cosine_mrr@10 | 0.1409 |
cosine_map@100 | 0.1671 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0754 |
cosine_accuracy@3 | 0.1401 |
cosine_accuracy@5 | 0.2091 |
cosine_accuracy@10 | 0.3922 |
cosine_precision@1 | 0.0754 |
cosine_precision@3 | 0.0467 |
cosine_precision@5 | 0.0418 |
cosine_precision@10 | 0.0392 |
cosine_recall@1 | 0.0754 |
cosine_recall@3 | 0.1401 |
cosine_recall@5 | 0.2091 |
cosine_recall@10 | 0.3922 |
cosine_ndcg@10 | 0.1973 |
cosine_mrr@10 | 0.1401 |
cosine_map@100 | 0.166 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0711 |
cosine_accuracy@3 | 0.1444 |
cosine_accuracy@5 | 0.2091 |
cosine_accuracy@10 | 0.3793 |
cosine_precision@1 | 0.0711 |
cosine_precision@3 | 0.0481 |
cosine_precision@5 | 0.0418 |
cosine_precision@10 | 0.0379 |
cosine_recall@1 | 0.0711 |
cosine_recall@3 | 0.1444 |
cosine_recall@5 | 0.2091 |
cosine_recall@10 | 0.3793 |
cosine_ndcg@10 | 0.1945 |
cosine_mrr@10 | 0.1396 |
cosine_map@100 | 0.1658 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0647 |
cosine_accuracy@3 | 0.1379 |
cosine_accuracy@5 | 0.2134 |
cosine_accuracy@10 | 0.3578 |
cosine_precision@1 | 0.0647 |
cosine_precision@3 | 0.046 |
cosine_precision@5 | 0.0427 |
cosine_precision@10 | 0.0358 |
cosine_recall@1 | 0.0647 |
cosine_recall@3 | 0.1379 |
cosine_recall@5 | 0.2134 |
cosine_recall@10 | 0.3578 |
cosine_ndcg@10 | 0.1838 |
cosine_mrr@10 | 0.1318 |
cosine_map@100 | 0.1592 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.069 |
cosine_accuracy@3 | 0.1358 |
cosine_accuracy@5 | 0.2091 |
cosine_accuracy@10 | 0.3534 |
cosine_precision@1 | 0.069 |
cosine_precision@3 | 0.0453 |
cosine_precision@5 | 0.0418 |
cosine_precision@10 | 0.0353 |
cosine_recall@1 | 0.069 |
cosine_recall@3 | 0.1358 |
cosine_recall@5 | 0.2091 |
cosine_recall@10 | 0.3534 |
cosine_ndcg@10 | 0.1826 |
cosine_mrr@10 | 0.1317 |
cosine_map@100 | 0.158 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,173 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 48.65 tokens
- max: 125 tokens
- min: 10 tokens
- mean: 20.96 tokens
- max: 45 tokens
- Samples:
positive anchor Quan es produeix la caducitat del dret funerari per haver transcorregut el termini de concessió i un cop que l'Ajuntament hagi resolt el procediment legalment establert per a la declaració de caducitat, és imprescindible formalitzar la nova concessió del dret.
Quan es produeix la caducitat del dret funerari?
Les persones beneficiàries de l'ajut per a la creació de noves empreses per persones donades d'alta al règim especial de treballadors autònoms.
Quin és el tipus de persones que poden beneficiar-se de l'ajut?
Les entitats beneficiàries són les responsables de la gestió dels recursos econòmics i materials assignats per a la realització del projecte o activitat subvencionat.
Quin és el paper de les entitats beneficiàries en la gestió dels recursos?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 2per_device_eval_batch_size
: 2gradient_accumulation_steps
: 2learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.0096 | 10 | 0.4269 | - | - | - | - | - |
0.0192 | 20 | 0.2328 | - | - | - | - | - |
0.0287 | 30 | 0.2803 | - | - | - | - | - |
0.0383 | 40 | 0.312 | - | - | - | - | - |
0.0479 | 50 | 0.0631 | - | - | - | - | - |
0.0575 | 60 | 0.1824 | - | - | - | - | - |
0.0671 | 70 | 0.3102 | - | - | - | - | - |
0.0767 | 80 | 0.2966 | - | - | - | - | - |
0.0862 | 90 | 0.3715 | - | - | - | - | - |
0.0958 | 100 | 0.0719 | - | - | - | - | - |
0.1054 | 110 | 0.279 | - | - | - | - | - |
0.1150 | 120 | 0.0954 | - | - | - | - | - |
0.1246 | 130 | 0.4912 | - | - | - | - | - |
0.1342 | 140 | 0.2877 | - | - | - | - | - |
0.1437 | 150 | 0.1933 | - | - | - | - | - |
0.1533 | 160 | 0.5942 | - | - | - | - | - |
0.1629 | 170 | 0.1336 | - | - | - | - | - |
0.1725 | 180 | 0.1755 | - | - | - | - | - |
0.1821 | 190 | 0.1455 | - | - | - | - | - |
0.1917 | 200 | 0.4391 | - | - | - | - | - |
0.2012 | 210 | 0.0567 | - | - | - | - | - |
0.2108 | 220 | 0.2368 | - | - | - | - | - |
0.2204 | 230 | 0.0249 | - | - | - | - | - |
0.2300 | 240 | 0.0518 | - | - | - | - | - |
0.2396 | 250 | 0.015 | - | - | - | - | - |
0.2492 | 260 | 0.4096 | - | - | - | - | - |
0.2587 | 270 | 0.115 | - | - | - | - | - |
0.2683 | 280 | 0.0532 | - | - | - | - | - |
0.2779 | 290 | 0.0407 | - | - | - | - | - |
0.2875 | 300 | 0.082 | - | - | - | - | - |
0.2971 | 310 | 0.1086 | - | - | - | - | - |
0.3067 | 320 | 0.0345 | - | - | - | - | - |
0.3162 | 330 | 0.3144 | - | - | - | - | - |
0.3258 | 340 | 0.0056 | - | - | - | - | - |
0.3354 | 350 | 0.0867 | - | - | - | - | - |
0.3450 | 360 | 0.1011 | - | - | - | - | - |
0.3546 | 370 | 0.6417 | - | - | - | - | - |
0.3642 | 380 | 0.0689 | - | - | - | - | - |
0.3737 | 390 | 0.0075 | - | - | - | - | - |
0.3833 | 400 | 0.0822 | - | - | - | - | - |
0.3929 | 410 | 0.098 | - | - | - | - | - |
0.4025 | 420 | 0.0442 | - | - | - | - | - |
0.4121 | 430 | 0.1759 | - | - | - | - | - |
0.4217 | 440 | 0.2625 | - | - | - | - | - |
0.4312 | 450 | 0.1123 | - | - | - | - | - |
0.4408 | 460 | 0.1174 | - | - | - | - | - |
0.4504 | 470 | 0.0529 | - | - | - | - | - |
0.4600 | 480 | 0.5396 | - | - | - | - | - |
0.4696 | 490 | 0.1985 | - | - | - | - | - |
0.4792 | 500 | 0.0016 | - | - | - | - | - |
0.4887 | 510 | 0.0496 | - | - | - | - | - |
0.4983 | 520 | 0.3138 | - | - | - | - | - |
0.5079 | 530 | 0.1974 | - | - | - | - | - |
0.5175 | 540 | 0.3489 | - | - | - | - | - |
0.5271 | 550 | 0.3332 | - | - | - | - | - |
0.5367 | 560 | 0.7838 | - | - | - | - | - |
0.5462 | 570 | 0.8335 | - | - | - | - | - |
0.5558 | 580 | 0.5018 | - | - | - | - | - |
0.5654 | 590 | 0.3391 | - | - | - | - | - |
0.5750 | 600 | 0.0055 | - | - | - | - | - |
0.5846 | 610 | 0.0264 | - | - | - | - | - |
0.5942 | 620 | 0.1397 | - | - | - | - | - |
0.6037 | 630 | 0.1114 | - | - | - | - | - |
0.6133 | 640 | 0.337 | - | - | - | - | - |
0.6229 | 650 | 0.0027 | - | - | - | - | - |
0.6325 | 660 | 0.1454 | - | - | - | - | - |
0.6421 | 670 | 0.2212 | - | - | - | - | - |
0.6517 | 680 | 0.0472 | - | - | - | - | - |
0.6612 | 690 | 0.6882 | - | - | - | - | - |
0.6708 | 700 | 0.0266 | - | - | - | - | - |
0.6804 | 710 | 1.0057 | - | - | - | - | - |
0.6900 | 720 | 0.1456 | - | - | - | - | - |
0.6996 | 730 | 0.4195 | - | - | - | - | - |
0.7092 | 740 | 0.0732 | - | - | - | - | - |
0.7187 | 750 | 0.0588 | - | - | - | - | - |
0.7283 | 760 | 0.0033 | - | - | - | - | - |
0.7379 | 770 | 0.0156 | - | - | - | - | - |
0.7475 | 780 | 0.0997 | - | - | - | - | - |
0.7571 | 790 | 0.856 | - | - | - | - | - |
0.7667 | 800 | 0.2394 | - | - | - | - | - |
0.7762 | 810 | 0.0322 | - | - | - | - | - |
0.7858 | 820 | 0.1821 | - | - | - | - | - |
0.7954 | 830 | 0.1883 | - | - | - | - | - |
0.8050 | 840 | 0.0994 | - | - | - | - | - |
0.8146 | 850 | 0.3889 | - | - | - | - | - |
0.8241 | 860 | 0.0221 | - | - | - | - | - |
0.8337 | 870 | 0.0106 | - | - | - | - | - |
0.8433 | 880 | 0.0031 | - | - | - | - | - |
0.8529 | 890 | 0.1453 | - | - | - | - | - |
0.8625 | 900 | 0.487 | - | - | - | - | - |
0.8721 | 910 | 0.2987 | - | - | - | - | - |
0.8816 | 920 | 0.0347 | - | - | - | - | - |
0.8912 | 930 | 0.2024 | - | - | - | - | - |
0.9008 | 940 | 0.0087 | - | - | - | - | - |
0.9104 | 950 | 0.3944 | - | - | - | - | - |
0.9200 | 960 | 0.0935 | - | - | - | - | - |
0.9296 | 970 | 0.2408 | - | - | - | - | - |
0.9391 | 980 | 0.1545 | - | - | - | - | - |
0.9487 | 990 | 0.1168 | - | - | - | - | - |
0.9583 | 1000 | 0.0051 | - | - | - | - | - |
0.9679 | 1010 | 0.681 | - | - | - | - | - |
0.9775 | 1020 | 0.0198 | - | - | - | - | - |
0.9871 | 1030 | 0.7243 | - | - | - | - | - |
0.9966 | 1040 | 0.0341 | - | - | - | - | - |
0.9995 | 1043 | - | 0.1608 | 0.1639 | 0.1678 | 0.1526 | 0.1610 |
1.0062 | 1050 | 0.001 | - | - | - | - | - |
1.0158 | 1060 | 0.0864 | - | - | - | - | - |
1.0254 | 1070 | 0.0209 | - | - | - | - | - |
1.0350 | 1080 | 0.2703 | - | - | - | - | - |
1.0446 | 1090 | 0.1857 | - | - | - | - | - |
1.0541 | 1100 | 0.0032 | - | - | - | - | - |
1.0637 | 1110 | 0.118 | - | - | - | - | - |
1.0733 | 1120 | 0.0029 | - | - | - | - | - |
1.0829 | 1130 | 0.0393 | - | - | - | - | - |
1.0925 | 1140 | 0.3103 | - | - | - | - | - |
1.1021 | 1150 | 0.0323 | - | - | - | - | - |
1.1116 | 1160 | 0.0925 | - | - | - | - | - |
1.1212 | 1170 | 0.0963 | - | - | - | - | - |
1.1308 | 1180 | 0.0481 | - | - | - | - | - |
1.1404 | 1190 | 0.0396 | - | - | - | - | - |
1.1500 | 1200 | 0.0033 | - | - | - | - | - |
1.1596 | 1210 | 0.1555 | - | - | - | - | - |
1.1691 | 1220 | 0.0938 | - | - | - | - | - |
1.1787 | 1230 | 0.1347 | - | - | - | - | - |
1.1883 | 1240 | 0.3057 | - | - | - | - | - |
1.1979 | 1250 | 0.0005 | - | - | - | - | - |
1.2075 | 1260 | 0.0634 | - | - | - | - | - |
1.2171 | 1270 | 0.0013 | - | - | - | - | - |
1.2266 | 1280 | 0.0012 | - | - | - | - | - |
1.2362 | 1290 | 0.0119 | - | - | - | - | - |
1.2458 | 1300 | 0.002 | - | - | - | - | - |
1.2554 | 1310 | 0.016 | - | - | - | - | - |
1.2650 | 1320 | 0.0169 | - | - | - | - | - |
1.2746 | 1330 | 0.0332 | - | - | - | - | - |
1.2841 | 1340 | 0.0076 | - | - | - | - | - |
1.2937 | 1350 | 0.0029 | - | - | - | - | - |
1.3033 | 1360 | 0.0011 | - | - | - | - | - |
1.3129 | 1370 | 0.0477 | - | - | - | - | - |
1.3225 | 1380 | 0.014 | - | - | - | - | - |
1.3321 | 1390 | 0.0002 | - | - | - | - | - |
1.3416 | 1400 | 0.012 | - | - | - | - | - |
1.3512 | 1410 | 0.0175 | - | - | - | - | - |
1.3608 | 1420 | 0.0088 | - | - | - | - | - |
1.3704 | 1430 | 0.0022 | - | - | - | - | - |
1.3800 | 1440 | 0.0007 | - | - | - | - | - |
1.3896 | 1450 | 0.0098 | - | - | - | - | - |
1.3991 | 1460 | 0.0003 | - | - | - | - | - |
1.4087 | 1470 | 0.0804 | - | - | - | - | - |
1.4183 | 1480 | 0.0055 | - | - | - | - | - |
1.4279 | 1490 | 0.1131 | - | - | - | - | - |
1.4375 | 1500 | 0.0018 | - | - | - | - | - |
1.4471 | 1510 | 0.0002 | - | - | - | - | - |
1.4566 | 1520 | 0.0143 | - | - | - | - | - |
1.4662 | 1530 | 0.0876 | - | - | - | - | - |
1.4758 | 1540 | 0.003 | - | - | - | - | - |
1.4854 | 1550 | 0.0087 | - | - | - | - | - |
1.4950 | 1560 | 0.0005 | - | - | - | - | - |
1.5046 | 1570 | 0.0002 | - | - | - | - | - |
1.5141 | 1580 | 0.1614 | - | - | - | - | - |
1.5237 | 1590 | 0.0017 | - | - | - | - | - |
1.5333 | 1600 | 0.0013 | - | - | - | - | - |
1.5429 | 1610 | 0.0041 | - | - | - | - | - |
1.5525 | 1620 | 0.0021 | - | - | - | - | - |
1.5621 | 1630 | 0.1113 | - | - | - | - | - |
1.5716 | 1640 | 0.0003 | - | - | - | - | - |
1.5812 | 1650 | 0.0003 | - | - | - | - | - |
1.5908 | 1660 | 0.0018 | - | - | - | - | - |
1.6004 | 1670 | 0.0004 | - | - | - | - | - |
1.6100 | 1680 | 0.0003 | - | - | - | - | - |
1.6195 | 1690 | 0.0017 | - | - | - | - | - |
1.6291 | 1700 | 0.0023 | - | - | - | - | - |
1.6387 | 1710 | 0.0167 | - | - | - | - | - |
1.6483 | 1720 | 0.0023 | - | - | - | - | - |
1.6579 | 1730 | 0.0095 | - | - | - | - | - |
1.6675 | 1740 | 0.0005 | - | - | - | - | - |
1.6770 | 1750 | 0.0014 | - | - | - | - | - |
1.6866 | 1760 | 0.0007 | - | - | - | - | - |
1.6962 | 1770 | 0.0014 | - | - | - | - | - |
1.7058 | 1780 | 0.0 | - | - | - | - | - |
1.7154 | 1790 | 0.0016 | - | - | - | - | - |
1.7250 | 1800 | 0.0004 | - | - | - | - | - |
1.7345 | 1810 | 0.0007 | - | - | - | - | - |
1.7441 | 1820 | 0.3356 | - | - | - | - | - |
1.7537 | 1830 | 0.001 | - | - | - | - | - |
1.7633 | 1840 | 0.0436 | - | - | - | - | - |
1.7729 | 1850 | 0.0839 | - | - | - | - | - |
1.7825 | 1860 | 0.0019 | - | - | - | - | - |
1.7920 | 1870 | 0.0406 | - | - | - | - | - |
1.8016 | 1880 | 0.0496 | - | - | - | - | - |
1.8112 | 1890 | 0.0164 | - | - | - | - | - |
1.8208 | 1900 | 0.0118 | - | - | - | - | - |
1.8304 | 1910 | 0.001 | - | - | - | - | - |
1.8400 | 1920 | 0.0004 | - | - | - | - | - |
1.8495 | 1930 | 0.002 | - | - | - | - | - |
1.8591 | 1940 | 0.0051 | - | - | - | - | - |
1.8687 | 1950 | 0.0624 | - | - | - | - | - |
1.8783 | 1960 | 0.0033 | - | - | - | - | - |
1.8879 | 1970 | 0.0001 | - | - | - | - | - |
1.8975 | 1980 | 0.1594 | - | - | - | - | - |
1.9070 | 1990 | 0.007 | - | - | - | - | - |
1.9166 | 2000 | 0.0002 | - | - | - | - | - |
1.9262 | 2010 | 0.0012 | - | - | - | - | - |
1.9358 | 2020 | 0.0011 | - | - | - | - | - |
1.9454 | 2030 | 0.0264 | - | - | - | - | - |
1.9550 | 2040 | 0.0004 | - | - | - | - | - |
1.9645 | 2050 | 0.008 | - | - | - | - | - |
1.9741 | 2060 | 0.1025 | - | - | - | - | - |
1.9837 | 2070 | 0.0745 | - | - | - | - | - |
1.9933 | 2080 | 0.006 | - | - | - | - | - |
2.0 | 2087 | - | 0.1609 | 0.1644 | 0.1708 | 0.1499 | 0.1696 |
2.0029 | 2090 | 0.001 | - | - | - | - | - |
2.0125 | 2100 | 0.0004 | - | - | - | - | - |
2.0220 | 2110 | 0.0003 | - | - | - | - | - |
2.0316 | 2120 | 0.0001 | - | - | - | - | - |
2.0412 | 2130 | 0.0003 | - | - | - | - | - |
2.0508 | 2140 | 0.0002 | - | - | - | - | - |
2.0604 | 2150 | 0.0006 | - | - | - | - | - |
2.0700 | 2160 | 0.04 | - | - | - | - | - |
2.0795 | 2170 | 0.0055 | - | - | - | - | - |
2.0891 | 2180 | 0.1454 | - | - | - | - | - |
2.0987 | 2190 | 0.0029 | - | - | - | - | - |
2.1083 | 2200 | 0.0006 | - | - | - | - | - |
2.1179 | 2210 | 0.0001 | - | - | - | - | - |
2.1275 | 2220 | 0.0129 | - | - | - | - | - |
2.1370 | 2230 | 0.0001 | - | - | - | - | - |
2.1466 | 2240 | 0.0003 | - | - | - | - | - |
2.1562 | 2250 | 0.4145 | - | - | - | - | - |
2.1658 | 2260 | 0.0048 | - | - | - | - | - |
2.1754 | 2270 | 0.0706 | - | - | - | - | - |
2.1850 | 2280 | 0.0026 | - | - | - | - | - |
2.1945 | 2290 | 0.008 | - | - | - | - | - |
2.2041 | 2300 | 0.0051 | - | - | - | - | - |
2.2137 | 2310 | 0.0307 | - | - | - | - | - |
2.2233 | 2320 | 0.0017 | - | - | - | - | - |
2.2329 | 2330 | 0.0005 | - | - | - | - | - |
2.2425 | 2340 | 0.0001 | - | - | - | - | - |
2.2520 | 2350 | 0.0001 | - | - | - | - | - |
2.2616 | 2360 | 0.0001 | - | - | - | - | - |
2.2712 | 2370 | 0.0461 | - | - | - | - | - |
2.2808 | 2380 | 0.0001 | - | - | - | - | - |
2.2904 | 2390 | 0.0003 | - | - | - | - | - |
2.3000 | 2400 | 0.001 | - | - | - | - | - |
2.3095 | 2410 | 0.0002 | - | - | - | - | - |
2.3191 | 2420 | 0.1568 | - | - | - | - | - |
2.3287 | 2430 | 0.0001 | - | - | - | - | - |
2.3383 | 2440 | 0.0005 | - | - | - | - | - |
2.3479 | 2450 | 0.0072 | - | - | - | - | - |
2.3575 | 2460 | 0.014 | - | - | - | - | - |
2.3670 | 2470 | 0.0003 | - | - | - | - | - |
2.3766 | 2480 | 0.0 | - | - | - | - | - |
2.3862 | 2490 | 0.0001 | - | - | - | - | - |
2.3958 | 2500 | 0.0008 | - | - | - | - | - |
2.4054 | 2510 | 0.0 | - | - | - | - | - |
2.4149 | 2520 | 0.0002 | - | - | - | - | - |
2.4245 | 2530 | 0.061 | - | - | - | - | - |
2.4341 | 2540 | 0.0005 | - | - | - | - | - |
2.4437 | 2550 | 0.0 | - | - | - | - | - |
2.4533 | 2560 | 0.0003 | - | - | - | - | - |
2.4629 | 2570 | 0.0095 | - | - | - | - | - |
2.4724 | 2580 | 0.0002 | - | - | - | - | - |
2.4820 | 2590 | 0.0 | - | - | - | - | - |
2.4916 | 2600 | 0.0003 | - | - | - | - | - |
2.5012 | 2610 | 0.0002 | - | - | - | - | - |
2.5108 | 2620 | 0.0035 | - | - | - | - | - |
2.5204 | 2630 | 0.0001 | - | - | - | - | - |
2.5299 | 2640 | 0.0 | - | - | - | - | - |
2.5395 | 2650 | 0.0017 | - | - | - | - | - |
2.5491 | 2660 | 0.0 | - | - | - | - | - |
2.5587 | 2670 | 0.0066 | - | - | - | - | - |
2.5683 | 2680 | 0.0004 | - | - | - | - | - |
2.5779 | 2690 | 0.0001 | - | - | - | - | - |
2.5874 | 2700 | 0.0 | - | - | - | - | - |
2.5970 | 2710 | 0.0 | - | - | - | - | - |
2.6066 | 2720 | 0.131 | - | - | - | - | - |
2.6162 | 2730 | 0.0001 | - | - | - | - | - |
2.6258 | 2740 | 0.0001 | - | - | - | - | - |
2.6354 | 2750 | 0.0001 | - | - | - | - | - |
2.6449 | 2760 | 0.0 | - | - | - | - | - |
2.6545 | 2770 | 0.0003 | - | - | - | - | - |
2.6641 | 2780 | 0.0095 | - | - | - | - | - |
2.6737 | 2790 | 0.0 | - | - | - | - | - |
2.6833 | 2800 | 0.0003 | - | - | - | - | - |
2.6929 | 2810 | 0.0001 | - | - | - | - | - |
2.7024 | 2820 | 0.0002 | - | - | - | - | - |
2.7120 | 2830 | 0.0007 | - | - | - | - | - |
2.7216 | 2840 | 0.0008 | - | - | - | - | - |
2.7312 | 2850 | 0.0 | - | - | - | - | - |
2.7408 | 2860 | 0.0002 | - | - | - | - | - |
2.7504 | 2870 | 0.0003 | - | - | - | - | - |
2.7599 | 2880 | 0.0062 | - | - | - | - | - |
2.7695 | 2890 | 0.0415 | - | - | - | - | - |
2.7791 | 2900 | 0.0002 | - | - | - | - | - |
2.7887 | 2910 | 0.0024 | - | - | - | - | - |
2.7983 | 2920 | 0.0022 | - | - | - | - | - |
2.8079 | 2930 | 0.0014 | - | - | - | - | - |
2.8174 | 2940 | 0.1301 | - | - | - | - | - |
2.8270 | 2950 | 0.0 | - | - | - | - | - |
2.8366 | 2960 | 0.0 | - | - | - | - | - |
2.8462 | 2970 | 0.0 | - | - | - | - | - |
2.8558 | 2980 | 0.0006 | - | - | - | - | - |
2.8654 | 2990 | 0.0 | - | - | - | - | - |
2.8749 | 3000 | 0.0235 | - | - | - | - | - |
2.8845 | 3010 | 0.0001 | - | - | - | - | - |
2.8941 | 3020 | 0.0285 | - | - | - | - | - |
2.9037 | 3030 | 0.0 | - | - | - | - | - |
2.9133 | 3040 | 0.0002 | - | - | - | - | - |
2.9229 | 3050 | 0.0 | - | - | - | - | - |
2.9324 | 3060 | 0.0005 | - | - | - | - | - |
2.9420 | 3070 | 0.0001 | - | - | - | - | - |
2.9516 | 3080 | 0.0011 | - | - | - | - | - |
2.9612 | 3090 | 0.0 | - | - | - | - | - |
2.9708 | 3100 | 0.0001 | - | - | - | - | - |
2.9804 | 3110 | 0.0046 | - | - | - | - | - |
2.9899 | 3120 | 0.0001 | - | - | - | - | - |
2.9995 | 3130 | 0.0005 | 0.1622 | 0.1647 | 0.1635 | 0.1564 | 0.1617 |
3.0091 | 3140 | 0.0 | - | - | - | - | - |
3.0187 | 3150 | 0.0 | - | - | - | - | - |
3.0283 | 3160 | 0.0 | - | - | - | - | - |
3.0379 | 3170 | 0.0002 | - | - | - | - | - |
3.0474 | 3180 | 0.0004 | - | - | - | - | - |
3.0570 | 3190 | 0.1022 | - | - | - | - | - |
3.0666 | 3200 | 0.0012 | - | - | - | - | - |
3.0762 | 3210 | 0.0001 | - | - | - | - | - |
3.0858 | 3220 | 0.0677 | - | - | - | - | - |
3.0954 | 3230 | 0.0 | - | - | - | - | - |
3.1049 | 3240 | 0.0002 | - | - | - | - | - |
3.1145 | 3250 | 0.0001 | - | - | - | - | - |
3.1241 | 3260 | 0.0005 | - | - | - | - | - |
3.1337 | 3270 | 0.0002 | - | - | - | - | - |
3.1433 | 3280 | 0.0 | - | - | - | - | - |
3.1529 | 3290 | 0.0021 | - | - | - | - | - |
3.1624 | 3300 | 0.0001 | - | - | - | - | - |
3.1720 | 3310 | 0.0077 | - | - | - | - | - |
3.1816 | 3320 | 0.0001 | - | - | - | - | - |
3.1912 | 3330 | 0.1324 | - | - | - | - | - |
3.2008 | 3340 | 0.0 | - | - | - | - | - |
3.2103 | 3350 | 0.1278 | - | - | - | - | - |
3.2199 | 3360 | 0.0001 | - | - | - | - | - |
3.2295 | 3370 | 0.0 | - | - | - | - | - |
3.2391 | 3380 | 0.0001 | - | - | - | - | - |
3.2487 | 3390 | 0.0001 | - | - | - | - | - |
3.2583 | 3400 | 0.0 | - | - | - | - | - |
3.2678 | 3410 | 0.0001 | - | - | - | - | - |
3.2774 | 3420 | 0.0 | - | - | - | - | - |
3.2870 | 3430 | 0.0001 | - | - | - | - | - |
3.2966 | 3440 | 0.0001 | - | - | - | - | - |
3.3062 | 3450 | 0.0001 | - | - | - | - | - |
3.3158 | 3460 | 0.0263 | - | - | - | - | - |
3.3253 | 3470 | 0.0001 | - | - | - | - | - |
3.3349 | 3480 | 0.0002 | - | - | - | - | - |
3.3445 | 3490 | 0.0003 | - | - | - | - | - |
3.3541 | 3500 | 0.0 | - | - | - | - | - |
3.3637 | 3510 | 0.0 | - | - | - | - | - |
3.3733 | 3520 | 0.0 | - | - | - | - | - |
3.3828 | 3530 | 0.0002 | - | - | - | - | - |
3.3924 | 3540 | 0.0001 | - | - | - | - | - |
3.4020 | 3550 | 0.0 | - | - | - | - | - |
3.4116 | 3560 | 0.0001 | - | - | - | - | - |
3.4212 | 3570 | 0.0001 | - | - | - | - | - |
3.4308 | 3580 | 0.0122 | - | - | - | - | - |
3.4403 | 3590 | 0.0 | - | - | - | - | - |
3.4499 | 3600 | 0.0001 | - | - | - | - | - |
3.4595 | 3610 | 0.0003 | - | - | - | - | - |
3.4691 | 3620 | 0.0 | - | - | - | - | - |
3.4787 | 3630 | 0.0 | - | - | - | - | - |
3.4883 | 3640 | 0.0001 | - | - | - | - | - |
3.4978 | 3650 | 0.0 | - | - | - | - | - |
3.5074 | 3660 | 0.0002 | - | - | - | - | - |
3.5170 | 3670 | 0.0004 | - | - | - | - | - |
3.5266 | 3680 | 0.0003 | - | - | - | - | - |
3.5362 | 3690 | 0.0004 | - | - | - | - | - |
3.5458 | 3700 | 0.0 | - | - | - | - | - |
3.5553 | 3710 | 0.0001 | - | - | - | - | - |
3.5649 | 3720 | 0.0001 | - | - | - | - | - |
3.5745 | 3730 | 0.0 | - | - | - | - | - |
3.5841 | 3740 | 0.0001 | - | - | - | - | - |
3.5937 | 3750 | 0.0003 | - | - | - | - | - |
3.6033 | 3760 | 0.0 | - | - | - | - | - |
3.6128 | 3770 | 0.0002 | - | - | - | - | - |
3.6224 | 3780 | 0.0 | - | - | - | - | - |
3.6320 | 3790 | 0.0 | - | - | - | - | - |
3.6416 | 3800 | 0.0 | - | - | - | - | - |
3.6512 | 3810 | 0.0 | - | - | - | - | - |
3.6608 | 3820 | 0.0 | - | - | - | - | - |
3.6703 | 3830 | 0.0 | - | - | - | - | - |
3.6799 | 3840 | 0.0001 | - | - | - | - | - |
3.6895 | 3850 | 0.0001 | - | - | - | - | - |
3.6991 | 3860 | 0.0002 | - | - | - | - | - |
3.7087 | 3870 | 0.0 | - | - | - | - | - |
3.7183 | 3880 | 0.0001 | - | - | - | - | - |
3.7278 | 3890 | 0.0002 | - | - | - | - | - |
3.7374 | 3900 | 0.0001 | - | - | - | - | - |
3.7470 | 3910 | 0.0003 | - | - | - | - | - |
3.7566 | 3920 | 0.0003 | - | - | - | - | - |
3.7662 | 3930 | 0.0021 | - | - | - | - | - |
3.7758 | 3940 | 0.0002 | - | - | - | - | - |
3.7853 | 3950 | 0.0001 | - | - | - | - | - |
3.7949 | 3960 | 0.0001 | - | - | - | - | - |
3.8045 | 3970 | 0.0001 | - | - | - | - | - |
3.8141 | 3980 | 0.0002 | - | - | - | - | - |
3.8237 | 3990 | 0.0001 | - | - | - | - | - |
3.8333 | 4000 | 0.0001 | - | - | - | - | - |
3.8428 | 4010 | 0.0001 | - | - | - | - | - |
3.8524 | 4020 | 0.0001 | - | - | - | - | - |
3.8620 | 4030 | 0.0 | - | - | - | - | - |
3.8716 | 4040 | 0.0003 | - | - | - | - | - |
3.8812 | 4050 | 0.0 | - | - | - | - | - |
3.8908 | 4060 | 0.002 | - | - | - | - | - |
3.9003 | 4070 | 0.0 | - | - | - | - | - |
3.9099 | 4080 | 0.0 | - | - | - | - | - |
3.9195 | 4090 | 0.0001 | - | - | - | - | - |
3.9291 | 4100 | 0.0 | - | - | - | - | - |
3.9387 | 4110 | 0.0 | - | - | - | - | - |
3.9483 | 4120 | 0.0 | - | - | - | - | - |
3.9578 | 4130 | 0.0 | - | - | - | - | - |
3.9674 | 4140 | 0.0 | - | - | - | - | - |
3.9770 | 4150 | 0.0 | - | - | - | - | - |
3.9866 | 4160 | 0.0004 | - | - | - | - | - |
3.9962 | 4170 | 0.0 | - | - | - | - | - |
3.9981 | 4172 | - | 0.1592 | 0.1658 | 0.1660 | 0.1580 | 0.1671 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for adriansanz/sitges2608bai-4ep
Base model
BAAI/bge-m3Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.075
- Cosine Accuracy@3 on dim 768self-reported0.144
- Cosine Accuracy@5 on dim 768self-reported0.213
- Cosine Accuracy@10 on dim 768self-reported0.390
- Cosine Precision@1 on dim 768self-reported0.075
- Cosine Precision@3 on dim 768self-reported0.048
- Cosine Precision@5 on dim 768self-reported0.043
- Cosine Precision@10 on dim 768self-reported0.039
- Cosine Recall@1 on dim 768self-reported0.075
- Cosine Recall@3 on dim 768self-reported0.144