File size: 7,231 Bytes
fba140f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# train_qlora.py
# QLoRA fine tuning for chat JSONL built from attack plans
# Works well with deepseek-ai/deepseek-coder-6.7b-instruct on Colab Pro GPUs
from __future__ import annotations
import argparse
from pathlib import Path
from typing import Dict, List, Union
import torch
from datasets import load_dataset
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
Trainer,
TrainingArguments,
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
def parse_args():
ap = argparse.ArgumentParser()
ap.add_argument("--base", type=str, required=True, help="Base model id or path")
ap.add_argument("--data", type=str, required=True, help="JSONL with chat messages")
ap.add_argument("--out", type=str, required=True, help="Output dir for adapter")
ap.add_argument("--epochs", type=int, default=2)
ap.add_argument("--bsz", type=int, default=8)
ap.add_argument("--grad_accum", type=int, default=1)
ap.add_argument("--cutoff_len", type=int, default=2048)
ap.add_argument("--lr", type=float, default=2e-4)
ap.add_argument("--lora_r", type=int, default=16)
ap.add_argument("--lora_alpha", type=int, default=32)
ap.add_argument("--lora_dropout", type=float, default=0.05)
ap.add_argument("--debug", action="store_true")
return ap.parse_args()
def device_supports_bf16() -> bool:
if not torch.cuda.is_available():
return False
major, _ = torch.cuda.get_device_capability(0)
return major >= 8 # Ampere or newer
def build_tokenizer(base_id: str):
tok = AutoTokenizer.from_pretrained(base_id, use_fast=True)
if tok.pad_token is None:
tok.pad_token = tok.eos_token
tok.padding_side = "right"
return tok
def _to_ids(x: Union[torch.Tensor, List[int], Dict[str, List[int]]]) -> List[int]:
if isinstance(x, torch.Tensor):
return x.detach().cpu().tolist()[0] if x.ndim == 2 else x.detach().cpu().tolist()
if isinstance(x, dict) and "input_ids" in x:
return x["input_ids"]
if isinstance(x, (list, tuple)):
return list(x)
raise TypeError(f"Unsupported chat template return type: {type(x)}")
def chat_to_ids(tokenizer: AutoTokenizer, messages: List[Dict], max_len: int):
# Prefer native chat template. In recent Transformers this returns a tensor
# when return_tensors is set, or a list of token ids when tokenize is True.
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template:
out = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=False,
return_tensors="pt",
max_length=max_len,
truncation=True,
)
ids = _to_ids(out)
attn = [1] * len(ids)
return {"input_ids": ids, "attention_mask": attn}
# Fallback when no chat template is available
lines = []
for m in messages:
role = m.get("role", "user")
content = m.get("content", "")
lines.append(f"{role}:\n{content}\n")
text = "\n".join(lines)
enc = tokenizer(text, max_length=max_len, truncation=True)
return {"input_ids": enc["input_ids"], "attention_mask": enc["attention_mask"]}
def collate_pad(tokenizer: AutoTokenizer):
pad_id = tokenizer.pad_token_id
def _fn(batch: List[Dict[str, List[int]]]):
max_len = max(len(x["input_ids"]) for x in batch)
input_ids, attn, labels = [], [], []
for x in batch:
ids = x["input_ids"]
am = x["attention_mask"]
pad_n = max_len - len(ids)
input_ids.append(ids + [pad_id] * pad_n)
attn.append(am + [0] * pad_n)
labels.append(ids + [-100] * pad_n)
return {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"attention_mask": torch.tensor(attn, dtype=torch.long),
"labels": torch.tensor(labels, dtype=torch.long),
}
return _fn
def guess_lora_targets(model: torch.nn.Module) -> List[str]:
prefs = [
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
"wi",
"wo",
"w1",
"w2",
"w3",
"out_proj",
]
found = set()
for name, _ in model.named_modules():
for p in prefs:
if p in name:
found.add(p)
return sorted(found) if found else ["Linear"]
def main():
args = parse_args()
base_id = args.base
data_path = Path(args.data)
out_dir = Path(args.out)
out_dir.mkdir(parents=True, exist_ok=True)
tokenizer = build_tokenizer(base_id)
ds = load_dataset("json", data_files=str(data_path), split="train")
def map_row(ex):
return chat_to_ids(tokenizer, ex["messages"], args.cutoff_len)
# Remove original columns after mapping so only model fields remain
ds = ds.map(map_row, remove_columns=ds.column_names)
collate = collate_pad(tokenizer)
quant = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
use_bf16 = device_supports_bf16()
torch_dtype = torch.bfloat16 if use_bf16 else torch.float16
torch.backends.cuda.matmul.allow_tf32 = True
model = AutoModelForCausalLM.from_pretrained(
base_id,
device_map="auto",
quantization_config=quant,
torch_dtype=torch_dtype,
)
model = prepare_model_for_kbit_training(model)
lconf = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
target_modules=guess_lora_targets(model),
)
model = get_peft_model(model, lconf)
train_args = TrainingArguments(
output_dir=str(out_dir),
num_train_epochs=args.epochs,
per_device_train_batch_size=args.bsz,
gradient_accumulation_steps=args.grad_accum,
learning_rate=args.lr,
lr_scheduler_type="cosine",
warmup_ratio=0.03,
logging_steps=5,
save_steps=100,
bf16=use_bf16,
fp16=not use_bf16,
optim="paged_adamw_8bit",
remove_unused_columns=False,
dataloader_num_workers=2,
report_to=[],
)
tr = Trainer(
model=model,
args=train_args,
train_dataset=ds,
data_collator=collate,
tokenizer=tokenizer,
)
if args.debug:
batch = next(iter(tr.get_train_dataloader()))
print("[debug] batch keys:", list(batch.keys()))
for k, v in batch.items():
if isinstance(v, torch.Tensor):
print(f"[debug] {k}: shape={tuple(v.shape)} dtype={v.dtype}")
tr.train()
model.save_pretrained(str(out_dir))
tokenizer.save_pretrained(str(out_dir))
print("[ok] saved adapter to", out_dir.resolve())
if __name__ == "__main__":
main()
|