distilbert-mouse-enhancers

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6932
  • Accuracy: 0.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 242 0.6932 0.5
No log 2.0 484 0.6949 0.5
0.693 3.0 726 0.6931 0.5
0.693 4.0 968 0.6931 0.5
0.694 5.0 1210 0.6932 0.5
0.694 6.0 1452 0.6935 0.5
0.6954 7.0 1694 0.6933 0.5
0.6954 8.0 1936 0.6932 0.5
0.6937 9.0 2178 0.6932 0.5
0.6937 10.0 2420 0.6932 0.5
0.6935 11.0 2662 0.6932 0.5
0.6935 12.0 2904 0.6934 0.5
0.6955 13.0 3146 0.6932 0.5
0.6955 14.0 3388 0.6931 0.5
0.6941 15.0 3630 0.6931 0.5
0.6941 16.0 3872 0.6932 0.5
0.6953 17.0 4114 0.6932 0.5
0.6953 18.0 4356 0.6931 0.5
0.6932 19.0 4598 0.6932 0.5
0.6932 20.0 4840 0.6931 0.5
0.6945 21.0 5082 0.6933 0.5
0.6945 22.0 5324 0.6932 0.5
0.6939 23.0 5566 0.6931 0.5
0.6939 24.0 5808 0.6931 0.5
0.6951 25.0 6050 0.6932 0.5
0.6951 26.0 6292 0.6931 0.5
0.6943 27.0 6534 0.6932 0.5
0.6943 28.0 6776 0.6931 0.5
0.6944 29.0 7018 0.6931 0.5
0.6944 30.0 7260 0.6932 0.5
0.6955 31.0 7502 0.6931 0.5
0.6955 32.0 7744 0.6933 0.5
0.6955 33.0 7986 0.6932 0.5
0.694 34.0 8228 0.6931 0.5
0.694 35.0 8470 0.6932 0.5
0.6937 36.0 8712 0.6932 0.5
0.6937 37.0 8954 0.6931 0.5
0.6923 38.0 9196 0.6932 0.5
0.6923 39.0 9438 0.6932 0.5
0.6931 40.0 9680 0.6931 0.5
0.6931 41.0 9922 0.6932 0.5
0.6937 42.0 10164 0.6932 0.5
0.6937 43.0 10406 0.6932 0.5
0.6936 44.0 10648 0.6932 0.5
0.6936 45.0 10890 0.6932 0.5
0.6933 46.0 11132 0.6932 0.5
0.6933 47.0 11374 0.6932 0.5
0.6924 48.0 11616 0.6932 0.5
0.6924 49.0 11858 0.6932 0.5
0.6929 50.0 12100 0.6932 0.5

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.19.0
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.