File size: 11,369 Bytes
d3772a0
4ceec0d
ea1a3cb
 
 
 
e9a118f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36fb6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3772a0
737a62c
 
 
02050a7
737a62c
 
 
02050a7
 
737a62c
b7272fd
cc83da6
b7272fd
737a62c
9536b40
 
 
 
 
 
 
25442a5
9536b40
 
 
 
 
 
 
 
 
 
 
737a62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ceec0d
737a62c
 
 
 
02050a7
737a62c
02050a7
737a62c
02050a7
 
737a62c
02050a7
 
 
737a62c
 
 
 
 
 
 
 
02050a7
 
737a62c
 
 
 
 
 
 
 
 
 
 
02050a7
737a62c
 
02050a7
737a62c
 
02050a7
737a62c
 
 
 
 
 
 
 
 
 
 
 
02050a7
 
a7c90fa
e9a118f
 
 
 
 
 
 
 
 
 
 
 
 
 
36fb6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
---
license: apache-2.0
tags:
- llm
- fine-tune
- yi
datasets:
- adamo1139/AEZAKMI_v2
license_name: yi-license
license_link: LICENSE
model-index:
- name: Yi-34B-200K-AEZAKMI-v2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 67.92
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.61
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.22
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 56.74
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 81.61
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 58.91
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 45.55
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 35.28
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 4.83
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.96
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.48
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 39.03
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-v2
      name: Open LLM Leaderboard
---

## Model description

Yi-34B 200K base model fine-tuned on AEZAKMI v2 dataset. Training took around 25 hours on single local RTX 3090 Ti.
It's like airoboros but with less gptslop, no refusals and less typical language used by RLHFed OpenAI models.
Say goodbye to  "It's important to remember"! \
Prompt format is standard chatml. Don't expect it to be good at math, riddles or be crazy smart. My end goal with AEZAKMI is to create a cozy free chatbot.
Cost of this fine-tune is about $10 in electricity. It took me 3 tries to get it right.
Base model used for fine-tuning was 200k context Yi-34B-Llama model shared by larryvrh.

I had to lower max_positional_embeddings in config.json and model_max_length for training to start, otherwise I was OOMing straight away. 
My first attempt had max_positional_embeddings set to 16384 and model_max_length set to 200000. This allowed fine-tuning to finish, but that model was broken after applying LoRA and merging it. \
This attempt had both max_position_embeddings and model_max_length set to 4096, which worked perfectly fine.

## Quants!

Huge thank you to LoneStriker and TheBloke for providing quantized versions.

EXL2 \
3bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-3.0bpw-h6-exl2 \
4bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-4.0bpw-h6-exl2 \
4.65bpw - https://huggingface.co/adamo1139/Yi-34B-200K-AEZAKMI-v2-exl2-4.65bpw \
5bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-5.0bpw-h6-exl2 \
6bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-6.0bpw-h6-exl2 \
8bpw - https://huggingface.co/LoneStriker/Yi-34B-200K-AEZAKMI-v2-8.0bpw-h8-exl2

GGUF - https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-GGUF

GPTQ - https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-GPTQ

AWQ - https://huggingface.co/TheBloke/Yi-34B-200K-AEZAKMI-v2-AWQ


## Prompt Format

I recommend using ChatML format, as this was used during fine-tune. \
Here's a prompt format you should use, you can set a different system message, model seems to respect that fine, so it wasn't overfitted.

```
<|im_start|>system
A chat with uncensored assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

## Intended uses & limitations

Use is limited by apache-2.0 license.

## Known Issues

I recommend to set repetition penalty to something around 1.05 to avoid repetition. So far I had good experience running this model with temperature 1.2.
Stories have ChatGPT like paragraph spacing, I will work on this in the future maybe, not a high priority

Unrestricted-ness of the v2 isn't quite something that I am happy with yet, especially using prompt "A chat.". \
With a slightly modifed prompt it works much better, I recommend using "A chat with uncensored assistant.", it's stupid but it helps a lot. \
Base Yi-34B model is contaminated with refusals and this contaminates all models trained on Yi-34B \
My next project is to attempt to de-contaminate base Yi-34B 4K and Yi-34B 200K using DPO with preferred data coming from uncontaminated raw models. I plan to release that dataset openly.

I was made aware of the frequent occurrence of the phrase "sending shivers down a spine" in the generations during RP of v1, so I fixed those samples - it should be better now. \
I can hold up to 24000 ctx with 4.65bpw exl2 version and 8-bit cache - long context should work as good as other models trained on 200k version of Yi-34B \
There is also some issue with handling long system messages for RP, I was planning to investigate it for v2 but I didn't.


## Axolotl training parameters

- bnb_4bit_use_double_quant: true
- is_llama_derived_model: true
- load_in_4bit: true
- adapter: qlora
- sequence_len: 1400
- sample_packing: true
- lora_r: 16
- lora_alpha: 32
- lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj
  - gate_proj
  - down_proj
  - up_proj
 - lora_target_linear: true
 - pad_to_sequence_len: false
 - micro_batch_size: 1
 - gradient_accumulation_steps: 1
 - num_epochs: 2.4
 - optimizer: adamw_bnb_8bit
 - lr_scheduler: constant
 - learning_rate: 0.00005
 - train_on_inputs: false
 - group_by_length: false
 - bf16: true
 - bfloat16: true
 - flash_optimum: false
 - gradient_checkpointing: true
 - flash_attention: true
 - seed: 42


## Upcoming

I will probably be working on de-contaminating base Yi-34B model now. \
My second run of AEZAKMI v2 fine-tune was just 0.15 epochs and I really like how natural this model is and how rich is it's vocabulary. I will try to train less to hit the sweetspot. \
I will be uploading LoRA adapter for that second run that was just 0.15 epochs. \
I believe that I might have gotten what I want if I would have stopped training sooner. I don't have checkpoints older than 1500 steps back so I would need to re-run training to get it back.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_adamo1139__Yi-34B-200K-AEZAKMI-v2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |71.00|
|AI2 Reasoning Challenge (25-Shot)|67.92|
|HellaSwag (10-Shot)              |85.61|
|MMLU (5-Shot)                    |75.22|
|TruthfulQA (0-shot)              |56.74|
|Winogrande (5-shot)              |81.61|
|GSM8k (5-shot)                   |58.91|


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_adamo1139__Yi-34B-200K-AEZAKMI-v2)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |23.69|
|IFEval (0-Shot)    |45.55|
|BBH (3-Shot)       |35.28|
|MATH Lvl 5 (4-Shot)| 4.83|
|GPQA (0-shot)      |10.96|
|MuSR (0-shot)      | 6.48|
|MMLU-PRO (5-shot)  |39.03|