w2v-bert-2.0-nchlt_mdd
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1304
- Wer: 0.1526
- Cer: 0.0265
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.2925 | 0.2164 | 300 | 0.3024 | 0.3468 | 0.0578 |
0.3241 | 0.4327 | 600 | 0.2461 | 0.2919 | 0.0490 |
0.2637 | 0.6491 | 900 | 0.2336 | 0.3058 | 0.0515 |
0.2286 | 0.8655 | 1200 | 0.2122 | 0.2685 | 0.0467 |
0.188 | 1.0815 | 1500 | 0.1680 | 0.2197 | 0.0373 |
0.1748 | 1.2979 | 1800 | 0.1682 | 0.2117 | 0.0382 |
0.1543 | 1.5142 | 2100 | 0.1492 | 0.1916 | 0.0357 |
0.1567 | 1.7306 | 2400 | 0.1647 | 0.2207 | 0.0380 |
0.139 | 1.9470 | 2700 | 0.1395 | 0.1972 | 0.0337 |
0.1247 | 2.1630 | 3000 | 0.1467 | 0.1855 | 0.0342 |
0.1207 | 2.3794 | 3300 | 0.1389 | 0.1782 | 0.0307 |
0.1132 | 2.5957 | 3600 | 0.1405 | 0.1719 | 0.0296 |
0.1148 | 2.8121 | 3900 | 0.1350 | 0.1809 | 0.0314 |
0.1072 | 3.0281 | 4200 | 0.1351 | 0.1784 | 0.0294 |
0.0991 | 3.2445 | 4500 | 0.1322 | 0.1678 | 0.0291 |
0.093 | 3.4609 | 4800 | 0.1326 | 0.1725 | 0.0297 |
0.0996 | 3.6772 | 5100 | 0.1318 | 0.1613 | 0.0289 |
0.0929 | 3.8936 | 5400 | 0.1288 | 0.1656 | 0.0284 |
0.0904 | 4.1096 | 5700 | 0.1204 | 0.1642 | 0.0273 |
0.0797 | 4.3260 | 6000 | 0.1189 | 0.1478 | 0.0261 |
0.0836 | 4.5424 | 6300 | 0.1201 | 0.1537 | 0.0267 |
0.078 | 4.7587 | 6600 | 0.1169 | 0.1559 | 0.0279 |
0.077 | 4.9751 | 6900 | 0.1166 | 0.1519 | 0.0260 |
0.07 | 5.1911 | 7200 | 0.1195 | 0.1507 | 0.0264 |
0.0668 | 5.4075 | 7500 | 0.1205 | 0.1493 | 0.0254 |
0.0668 | 5.6239 | 7800 | 0.1139 | 0.1503 | 0.0260 |
0.0666 | 5.8402 | 8100 | 0.1234 | 0.1520 | 0.0263 |
0.0652 | 6.0563 | 8400 | 0.1233 | 0.1412 | 0.0251 |
0.0535 | 6.2726 | 8700 | 0.1294 | 0.1427 | 0.0262 |
0.0555 | 6.4890 | 9000 | 0.1215 | 0.1578 | 0.0266 |
0.0555 | 6.7054 | 9300 | 0.1262 | 0.1404 | 0.0254 |
0.056 | 6.9217 | 9600 | 0.1334 | 0.1555 | 0.0292 |
0.0539 | 7.1378 | 9900 | 0.1298 | 0.1466 | 0.0256 |
0.0481 | 7.3541 | 10200 | 0.1308 | 0.1438 | 0.0260 |
0.0464 | 7.5705 | 10500 | 0.1251 | 0.1387 | 0.0248 |
0.0519 | 7.7869 | 10800 | 0.1310 | 0.1621 | 0.0275 |
0.0507 | 8.0029 | 11100 | 0.1204 | 0.1469 | 0.0259 |
0.0414 | 8.2193 | 11400 | 0.1248 | 0.1446 | 0.0255 |
0.0465 | 8.4356 | 11700 | 0.1354 | 0.1635 | 0.0273 |
0.0443 | 8.6520 | 12000 | 0.1294 | 0.1443 | 0.0260 |
0.0459 | 8.8684 | 12300 | 0.1230 | 0.1404 | 0.0255 |
0.0453 | 9.0844 | 12600 | 0.1497 | 0.1613 | 0.0310 |
0.0494 | 9.3008 | 12900 | 0.1330 | 0.1497 | 0.0271 |
0.0501 | 9.5171 | 13200 | 0.1378 | 0.1555 | 0.0278 |
0.0506 | 9.7335 | 13500 | 0.1310 | 0.1519 | 0.0265 |
0.0516 | 9.9499 | 13800 | 0.1304 | 0.1526 | 0.0265 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for aconeil/w2v-bert-2.0-nchlt_mdd
Base model
facebook/w2v-bert-2.0