File size: 12,932 Bytes
db2b013
d7b0f01
 
bff2cd7
d7b0f01
bff2cd7
 
9b4781a
 
 
 
 
 
 
 
 
 
d7b0f01
9b4781a
d7b0f01
 
 
db2b013
bff2cd7
 
 
9b4781a
 
 
 
9792b12
6c2bc3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b4781a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bff2cd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b4781a
 
d7b0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
---
language:
- en
license: cc-by-nc-4.0
library_name: transformers
tags:
- generated_from_trainer
- axolotl
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
datasets:
- argilla/OpenHermes2.5-dpo-binarized-alpha
base_model: mlabonne/NeuralMonarch-7B
pipeline_tag: text-generation
model-index:
- name: AlphaMonarch-laser
  results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# AlphaMonarch-laser 

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/62S_ExHO6NKCM3NhPDrds.jpeg)

AlphaMonarch-laser is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset but achieves better performance then [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B/) using  LaserQLoRA. I have fine-tuned this model only on half of the projections, but have achieved better results as compared to the version released by Maximme Labonne. I have trained this model for 1080 steps.

AlphaMonarch-laser is ranking 1 on YALL - [Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/Jgxw1FZRx7nNAdSh7nYt1.png)

## 🏆 Evaluation results

# Nous Benchmark

### AGIEVAL

| Task                            | Version | Metric       | Value  | StdErr |
|---------------------------------|---------|--------------|--------|--------|
| agieval_aqua_rat                |     0   | acc          | 28.35% | 2.83%  |
| agieval_aqua_rat                |     0   | acc_norm     | 26.38% | 2.77%  |
| agieval_logiqa_en               |     0   | acc          | 38.25% | 1.91%  |
| agieval_logiqa_en               |     0   | acc_norm     | 38.10% | 1.90%  |
| agieval_lsat_ar                 |     0   | acc          | 23.91% | 2.82%  |
| agieval_lsat_ar                 |     0   | acc_norm     | 23.48% | 2.80%  |
| agieval_lsat_lr                 |     0   | acc          | 52.75% | 2.21%  |
| agieval_lsat_lr                 |     0   | acc_norm     | 53.92% | 2.21%  |
| agieval_lsat_rc                 |     0   | acc          | 66.91% | 2.87%  |
| agieval_lsat_rc                 |     0   | acc_norm     | 67.29% | 2.87%  |
| agieval_sat_en                  |     0   | acc          | 78.64% | 2.86%  |
| agieval_sat_en                  |     0   | acc_norm     | 78.64% | 2.86%  |
| agieval_sat_en_without_passage  |     0   | acc          | 45.15% | 3.48%  |
| agieval_sat_en_without_passage  |     0   | acc_norm     | 44.17% | 3.47%  |
| agieval_sat_math                |     0   | acc          | 33.18% | 3.18%  |
| agieval_sat_math                |     0   | acc_norm     | 31.36% | 3.14%  |
Average: 28.41%

### GPT4ALL

| Task         | Version | Metric   | Value | StdErr |
|--------------|---------|----------|-------|--------|
| arc_challenge| 0       | acc      | 66.30%| ± 1.38%|
|              |         | acc_norm | 68.26%| ± 1.36%|
| arc_easy     | 0       | acc      | 86.57%| ± 0.70%|
|              |         | acc_norm | 80.81%| ± 0.81%|
| boolq        | 1       | acc      | 87.16%| ± 0.59%|
| hellaswag    | 0       | acc      | 69.60%| ± 0.46%|
|              |         | acc_norm | 87.45%| ± 0.33%|
| openbookqa   | 0       | acc      | 39.20%| ± 2.19%|
|              |         | acc_norm | 49.60%| ± 2.24%|
| piqa         | 0       | acc      | 83.03%| ± 0.88%|
|              |         | acc_norm | 84.87%| ± 0.84%|
| winogrande   | 0       | acc      | 81.06%| ± 1.10%|
Average: 76.98%

### TRUTHFUL-QA

| Task          | Version | Metric | Value | StdErr |
|---------------|---------|--------|-------|--------|
| truthfulqa_mc |    1    |   mc1  | 63.04%| ± 1.69%|
| truthfulqa_mc |    1    |   mc2  | 78.39%| ± 1.37%|
Average: 70.71%

### BIGBENCH

| Task                                           | Version | Metric                | Value | StdErr             |
|------------------------------------------------|---------|-----------------------|-------|--------------------|
| bigbench_causal_judgement                      |    0    | multiple_choice_grade| 60.00%| ± 3.56%            |
| bigbench_date_understanding                    |    0    | multiple_choice_grade| 62.06%| ± 2.53%            |
| bigbench_disambiguation_qa                     |    0    | multiple_choice_grade| 54.26%| ± 3.11%            |
| bigbench_geometric_shapes                      |    0    | multiple_choice_grade| 23.96%| ± 2.26%            |
|                                                |         | exact_str_match       | 0.00% | ± 0.00%            |
| bigbench_logical_deduction_five_objects        |    0    | multiple_choice_grade| 32.80%| ± 2.10%            |
| bigbench_logical_deduction_seven_objects       |    0    | multiple_choice_grade| 23.86%| ± 1.61%            |
| bigbench_logical_deduction_three_objects       |    0    | multiple_choice_grade| 59.33%| ± 2.84%            |
| bigbench_movie_recommendation                  |    0    | multiple_choice_grade| 58.00%| ± 2.21%            |
| bigbench_navigate                              |    0    | multiple_choice_grade| 56.00%| ± 1.57%            |
| bigbench_reasoning_about_colored_objects       |    0    | multiple_choice_grade| 69.20%| ± 1.03%            |
| bigbench_ruin_names                            |    0    | multiple_choice_grade| 55.36%| ± 2.35%            |
| bigbench_salient_translation_error_detection   |    0    | multiple_choice_grade| 41.48%| ± 1.56%            |
| bigbench_snarks                                |    0    | multiple_choice_grade| 73.48%| ± 3.29%            |
| bigbench_sports_understanding                  |    0    | multiple_choice_grade| 76.06%| ± 1.36%            |
| bigbench_temporal_sequences                    |    0    | multiple_choice_grade| 55.50%| ± 1.57%            |
| bigbench_tracking_shuffled_objects_five_objects|    0    | multiple_choice_grade| 23.28%| ± 1.20%            |
| bigbench_tracking_shuffled_objects_seven_objects|   0    | multiple_choice_grade| 19.37%| ± 0.94%            |
| bigbench_tracking_shuffled_objects_three_objects|   0    | multiple_choice_grade| 59.33%| ± 2.84%            |
Average: 55.37%

# Openllm Benchmark

|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |70.12|±  |  1.30|
|             |       |acc_norm|73.27|±  |  1.29|
|hellaswag    |      0|acc     |71.80|±  |  0.44|
|             |       |acc_norm|89.20|±  |  0.30|
|gsm8k        |      0|acc     |66.77|±  |  1.2 |
|winogrande   |      0|acc     |84.6 |±  |  1.0 |

Average: 73.5%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |62.79|±  |  1.69|
|             |       |mc2   |77.90|±  |  1.37|

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1080



### 📝 Axolotl Configuration

```yaml
base_model: mlabonne/NeuralMonarch-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
rl: dpo
chat_template: chatml
datasets:
  - path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
    split: train
    type: chatml.intel
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out
adapter: qlora
lora_model_dir:
sequence_len: 1800
sample_packing: false
pad_to_sequence_len: false
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
 - layers.1.self_attn.q_proj
 - layers.0.self_attn.q_proj
 - layers.15.self_attn.q_proj
 - layers.12.self_attn.q_proj
 - layers.11.self_attn.q_proj
 - layers.14.self_attn.q_proj
 - layers.9.self_attn.q_proj
 - layers.16.self_attn.q_proj
 - layers.30.self_attn.q_proj
 - layers.18.self_attn.q_proj
 - layers.13.self_attn.q_proj
 - layers.10.self_attn.q_proj
 - layers.7.self_attn.q_proj
 - layers.8.self_attn.q_proj
 - layers.4.self_attn.q_proj
 - layers.19.self_attn.q_proj
 - layers.27.self_attn.k_proj
 - layers.24.self_attn.k_proj
 - layers.25.self_attn.k_proj
 - layers.22.self_attn.k_proj
 - layers.26.self_attn.k_proj
 - layers.29.self_attn.k_proj
 - layers.23.self_attn.k_proj
 - layers.28.self_attn.k_proj
 - layers.21.self_attn.k_proj
 - layers.31.self_attn.k_proj
 - layers.30.self_attn.k_proj
 - layers.20.self_attn.k_proj
 - layers.5.self_attn.k_proj
 - layers.19.self_attn.k_proj
 - layers.17.self_attn.k_proj
 - layers.18.self_attn.k_proj
 - layers.19.self_attn.v_proj
 - layers.24.self_attn.v_proj
 - layers.18.self_attn.v_proj
 - layers.5.self_attn.v_proj
 - layers.3.self_attn.v_proj
 - layers.16.self_attn.v_proj
 - layers.23.self_attn.v_proj
 - layers.27.self_attn.v_proj
 - layers.25.self_attn.v_proj
 - layers.26.self_attn.v_proj
 - layers.20.self_attn.v_proj
 - layers.6.self_attn.v_proj
 - layers.15.self_attn.v_proj
 - layers.17.self_attn.v_proj
 - layers.29.self_attn.v_proj
 - layers.22.self_attn.v_proj
 - layers.12.self_attn.o_proj
 - layers.9.self_attn.o_proj
 - layers.14.self_attn.o_proj
 - layers.0.self_attn.o_proj
 - layers.6.self_attn.o_proj
 - layers.8.self_attn.o_proj
 - layers.10.self_attn.o_proj
 - layers.11.self_attn.o_proj
 - layers.13.self_attn.o_proj
 - layers.24.self_attn.o_proj
 - layers.7.self_attn.o_proj
 - layers.15.self_attn.o_proj
 - layers.5.self_attn.o_proj
 - layers.17.self_attn.o_proj
 - layers.25.self_attn.o_proj
 - layers.4.self_attn.o_proj
 - layers.31.mlp.gate_proj
 - layers.30.mlp.gate_proj
 - layers.4.mlp.gate_proj
 - layers.3.mlp.gate_proj
 - layers.29.mlp.gate_proj
 - layers.28.mlp.gate_proj
 - layers.6.mlp.gate_proj
 - layers.27.mlp.gate_proj
 - layers.5.mlp.gate_proj
 - layers.26.mlp.gate_proj
 - layers.25.mlp.gate_proj
 - layers.7.mlp.gate_proj
 - layers.2.mlp.gate_proj
 - layers.24.mlp.gate_proj
 - layers.23.mlp.gate_proj
 - layers.10.mlp.gate_proj
 - layers.6.mlp.up_proj
 - layers.4.mlp.up_proj
 - layers.5.mlp.up_proj
 - layers.27.mlp.up_proj
 - layers.25.mlp.up_proj
 - layers.26.mlp.up_proj
 - layers.17.mlp.up_proj
 - layers.24.mlp.up_proj
 - layers.7.mlp.up_proj
 - layers.10.mlp.up_proj
 - layers.3.mlp.up_proj
 - layers.11.mlp.up_proj
 - layers.23.mlp.up_proj
 - layers.9.mlp.up_proj
 - layers.14.mlp.up_proj
 - layers.18.mlp.up_proj
 - layers.19.mlp.down_proj
 - layers.20.mlp.down_proj
 - layers.18.mlp.down_proj
 - layers.21.mlp.down_proj
 - layers.29.mlp.down_proj
 - layers.1.mlp.down_proj
 - layers.22.mlp.down_proj
 - layers.28.mlp.down_proj
 - layers.23.mlp.down_proj
 - layers.30.mlp.down_proj
 - layers.17.mlp.down_proj
 - layers.4.mlp.down_proj
 - layers.2.mlp.down_proj
 - layers.15.mlp.down_proj
 - layers.5.mlp.down_proj
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 5e-7
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 1
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 1080
max_steps: 1080
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0
- axolotl: 0.4.0

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abideen__AlphaMonarch-laser)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |76.00|
|AI2 Reasoning Challenge (25-Shot)|73.12|
|HellaSwag (10-Shot)              |89.21|
|MMLU (5-Shot)                    |64.43|
|TruthfulQA (0-shot)              |77.90|
|Winogrande (5-shot)              |84.61|
|GSM8k (5-shot)                   |66.72|