File size: 7,555 Bytes
7624855
10cb994
 
 
7624855
 
 
 
10cb994
 
7624855
10cb994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7624855
 
 
 
0018fb8
7624855
dbed5af
 
 
 
 
8c60a62
dbed5af
c1279a2
823ec18
 
 
 
 
 
 
 
 
 
dbed5af
 
 
 
 
 
 
 
 
 
7624855
0939cad
7624855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10cb994
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
language:
- en
- ta
license: other
datasets:
- vicgalle/alpaca-gpt4
- abhinand/tamil-alpaca
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model: abhinand/gemma-2b-tamil
model-index:
- name: gemma-2b-it-tamil-v0.1-alpha
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 50.09
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 71.41
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 39.94
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 42.63
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.96
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 16.6
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha
      name: Open LLM Leaderboard
---

# Gemma 2B Tamil v0.1 Alpha [Experimental Release]

This is a Tamil instruction finetuned version of Google's Gemma 2B model. This is an experiment to see if Gemma can be adapted for Tamil without expanding vocabulary. While the responses may be rusty at times, it shows a lot of promise for a 2B parameter model.

**Procedure:**

1. The [Gemma base model](https://huggingface.co/google/gemma-2b) was continually pretrained on all available Tamil Wikipedia data for 3 epochs.
2. The updated model was then finetuned on a mix of English and Tamil alpaca datasets for 5 epochs.

> **Note:** This project is currently under development (FOR TAMIL). The initial pretraining phase may not have been extensive enough, which suggests that the model's performance could improve by extending the pretraining on a larger dataset, such as CulturaX.

### πŸ† Benchmarks 

This model outperforms Google's Gemma 2B base and instruct models on all benchmarks in Nous evaluation suite. It also surprisingly outperforms [mlabonne/Gemmalpaca-2B](https://huggingface.co/mlabonne/Gemmalpaca-2B) (the best performing 2B model in benchmarks as of Feb 25, 2024) despite being a model aimed at language adaptation.

| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
|[gemma-2b-it-tamil-v0.1-alpha](https://huggingface.co/abhinand/gemma-2b-it-tamil-v0.1-alpha)[πŸ“„](https://gist.github.com/abhinand5/559d542437f6b7060fee94cc1f7861f5)|  39.41|  23.38|     58.94|   43.18|  32.14|
| [mlabonne/Gemmalpaca-2B](https://huggingface.co/mlabonne/Gemmalpaca-2B) [πŸ“„](https://gist.github.com/mlabonne/4b638752fc3227df566f9562064cb864) | 38.39 | 24.48 | 51.22 | 47.02 | 30.85 |
| [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) [πŸ“„](https://gist.github.com/mlabonne/db0761e74175573292acf497da9e5d95) | 36.1 | 23.76 | 43.6 | 47.64 | 29.41 |
| [google/gemma-2b](https://huggingface.co/google/gemma-2b) [πŸ“„](https://gist.github.com/mlabonne/7df1f238c515a5f63a750c8792cef59e) | 34.26 | 22.7 | 43.35 | 39.96 | 31.03 |

## Model description

- **Model type:** A 2B parameter GPT-like model finetuned on 100,000 samples consisting of an equal proportion of English and Tamil samples.
- **Language(s):** Bilingual. English and Tamil.
- **License:** [Google Gemma Terms of Use](https://ai.google.dev/gemma/terms)
- **Finetuned from model:** [abhinand/gemma-2b-tamil](https://huggingface.co/abhinand/gemma-2b-tamil)
- **Training Precision:** `bfloat16`
- **Training Hardware:** 4x Nvidia RTX 3090 GPUs
- **Training Cost:** $20


## Support my work

If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated.

[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b)

## Prompting Format [Alpaca]

**Prompt Template Without Input**

```
{system_prompt}

### Instruction:
{instruction or query}

### Response:
{response}
```

**Prompt Template With Input**

```
{system_prompt}

### Instruction:
{instruction or query}

### Input:
{input}

### Response:
{response}
```

## Usage Note

It's important to note that the models have not undergone detoxification. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications.

## Meet the Developers

Get to know the creators behind this innovative model and follow their contributions to the field:

- [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/)

We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abhinand__gemma-2b-it-tamil-v0.1-alpha)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |47.60|
|AI2 Reasoning Challenge (25-Shot)|50.09|
|HellaSwag (10-Shot)              |71.41|
|MMLU (5-Shot)                    |39.94|
|TruthfulQA (0-shot)              |42.63|
|Winogrande (5-shot)              |64.96|
|GSM8k (5-shot)                   |16.60|