|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- aaditya/Llama3-OpenBioLLM-8B |
|
- johnsnowlabs/JSL-MedLlama-3-8B-v2.0 |
|
- Jayant9928/orpo_med_v3 |
|
- skumar9/Llama-medx_v3 |
|
base_model: |
|
- aaditya/Llama3-OpenBioLLM-8B |
|
- johnsnowlabs/JSL-MedLlama-3-8B-v2.0 |
|
- Jayant9928/orpo_med_v3 |
|
- skumar9/Llama-medx_v3 |
|
--- |
|
|
|
# Llama-3-OpenBioMed-8B-dare-ties-4x |
|
|
|
Llama-3-OpenBioMed-8B-dare-ties-4x is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) |
|
* [johnsnowlabs/JSL-MedLlama-3-8B-v2.0](https://huggingface.co/johnsnowlabs/JSL-MedLlama-3-8B-v2.0) |
|
* [Jayant9928/orpo_med_v3](https://huggingface.co/Jayant9928/orpo_med_v3) |
|
* [skumar9/Llama-medx_v3](https://huggingface.co/skumar9/Llama-medx_v3) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: johnsnowlabs/JSL-MedLlama-3-8B-v2.0 |
|
# No parameters necessary for base model |
|
- model: aaditya/Llama3-OpenBioLLM-8B |
|
parameters: |
|
density: 0.53 |
|
weight: 0.2 |
|
- model: johnsnowlabs/JSL-MedLlama-3-8B-v2.0 |
|
parameters: |
|
density: 0.53 |
|
weight: 0.3 |
|
- model: Jayant9928/orpo_med_v3 |
|
parameters: |
|
density: 0.53 |
|
weight: 0.3 |
|
- model: skumar9/Llama-medx_v3 |
|
parameters: |
|
density: 0.53 |
|
weight: 0.2 |
|
merge_method: dare_ties |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "abhinand/Llama-3-OpenBioMed-8B-dare-ties-4x" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |