SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("abdulmatinomotoso/BAA-finetuned-yoruba-IR")
# Run inference
sentences = [
'Kini o yẹ ki Ilu India ṣe lori ikọlu UI?',
'Bawo ni India le dahun si ikọlu ẹru UI?',
'Lẹhin gbogbo họọsi ti media media ti ṣẹda awọn ikọlu URI Wip, kii yoo jẹ ohun itiju fun India ti ko ba kọlu Pakistan?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.804 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,900 training samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 5 tokens
- mean: 26.19 tokens
- max: 80 tokens
- min: 6 tokens
- mean: 25.71 tokens
- max: 84 tokens
- min: 4 tokens
- mean: 27.44 tokens
- max: 107 tokens
- Samples:
query pos neg Kini idi ti Ilu India ṣe a ko ni ọkan lori ijiroro oloselu kan bi ni AMẸRIKA?
Kini idi ti a ko le ni ijiroro gbangba laarin awọn oloselu ni India bi ọkan ninu wa?
Njẹ eniyan le da quo duro de India Pakistan ariyanjiyan?A ni aisan ati ti o ri eyi lojoojumọ ni olopo?
Kini OnePlus Ọkan?
Bawo ni OnePlus kan?
Kini idi ti OnePlus Ọkan dara?
Ṣe ọkan wa ṣe iṣakoso awọn ẹdun wa?
Bawo ni ọlọgbọn ati awọn eniyan aṣeyọri ṣe ṣakoso awọn ẹdun wọn?
Bawo ni MO ṣe le ṣakoso awọn ẹdun mi rere fun awọn eniyan ti Mo nifẹ ṣugbọn wọn ko bikita nipa mi?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 1,000 evaluation samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 7 tokens
- mean: 25.73 tokens
- max: 106 tokens
- min: 7 tokens
- mean: 25.48 tokens
- max: 129 tokens
- min: 5 tokens
- mean: 27.17 tokens
- max: 135 tokens
- Samples:
query pos neg Bawo ni o jẹ ọjọ ebi?
Bawo ni o jẹ ọsan
Njẹ NEBM lueMo ṣẹlẹ lati wa awọn ifiweranṣẹ ti o sọ pe o jẹ iro ati pe ko ni itter
Kini awọn ohun elo akọkọ ti kọnputa kan?
Kini diẹ ninu awọn ẹya akọkọ ti kọnputa kan?Awọn iṣẹ wo ni wọn nṣe iranṣẹ?
Kini awọn eto kọmputa?Kini awọn iṣẹ ti awọn eto kọnputa?
Ṣe o le faffiti Artists fun sokiri Graffiti ni Rockdale County, GA?
Ṣe o le fun awọn ojukokoro fun fun sokiri Graffiti ni Cockdale County, Georgia?
Kini idi ti Graffiti jẹ arufin?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_eval_batch_size
: 3learning_rate
: 1e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 3per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
---|---|---|---|---|
0 | 0 | - | - | 0.86 |
0.1631 | 100 | 4.8244 | 4.7411 | 0.889 |
0.3263 | 200 | 4.7103 | 4.5899 | 0.809 |
0.4894 | 300 | 4.648 | 4.5418 | 0.812 |
0.6525 | 400 | 4.5989 | 4.5085 | 0.799 |
0.8157 | 500 | 4.5699 | 4.4887 | 0.79 |
0.9788 | 600 | 4.5808 | 4.4678 | 0.81 |
1.1419 | 700 | 4.5772 | 4.4608 | 0.808 |
1.3051 | 800 | 4.4925 | 4.4485 | 0.816 |
1.4682 | 900 | 4.4546 | 4.4450 | 0.802 |
1.6313 | 1000 | 4.4472 | 4.4355 | 0.811 |
1.7945 | 1100 | 4.4556 | 4.4271 | 0.811 |
1.9576 | 1200 | 4.4595 | 4.4232 | 0.804 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for abdulmatinomotoso/BAA-finetuned-yoruba-IR
Base model
BAAI/bge-m3