output_hemo_neg_3

This model is a fine-tuned version of nferruz/ProtGPT2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9794
  • Accuracy: 0.4240

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 500.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.9415 1.0 38 5.6068 0.3084
5.7302 2.0 76 5.4263 0.3204
5.5675 3.0 114 5.2875 0.3231
5.4594 4.0 152 5.2055 0.3250
5.3808 5.0 190 5.1589 0.3297
5.3353 6.0 228 5.1195 0.3321
5.2946 7.0 266 5.0779 0.3338
5.2632 8.0 304 5.0432 0.3370
5.2279 9.0 342 5.0154 0.3372
5.1999 10.0 380 4.9931 0.3377
5.1853 11.0 418 4.9701 0.3399
5.1619 12.0 456 4.9458 0.3429
5.1395 13.0 494 4.9274 0.3438
5.1179 14.0 532 4.9080 0.3463
5.1048 15.0 570 4.8921 0.3465
5.0837 16.0 608 4.8756 0.3470
5.067 17.0 646 4.8606 0.3492
5.0516 18.0 684 4.8469 0.3507
5.0313 19.0 722 4.8366 0.3522
5.0225 20.0 760 4.8276 0.3526
5.0068 21.0 798 4.8179 0.3522
4.9942 22.0 836 4.8051 0.3522
4.9758 23.0 874 4.7963 0.3526
4.9605 24.0 912 4.7843 0.3529
4.9525 25.0 950 4.7728 0.3531
4.9409 26.0 988 4.7618 0.3524
4.9328 27.0 1026 4.7523 0.3519
4.9168 28.0 1064 4.7444 0.3526
4.9057 29.0 1102 4.7332 0.3551
4.8896 30.0 1140 4.7237 0.3561
4.8869 31.0 1178 4.7156 0.3565
4.8798 32.0 1216 4.7093 0.3568
4.8591 33.0 1254 4.7029 0.3575
4.8548 34.0 1292 4.6946 0.3570
4.8502 35.0 1330 4.6871 0.3595
4.8378 36.0 1368 4.6803 0.3595
4.829 37.0 1406 4.6733 0.3600
4.8177 38.0 1444 4.6643 0.3602
4.809 39.0 1482 4.6591 0.3607
4.8002 40.0 1520 4.6507 0.3607
4.7938 41.0 1558 4.6438 0.3614
4.7787 42.0 1596 4.6367 0.3617
4.7685 43.0 1634 4.6306 0.3629
4.762 44.0 1672 4.6211 0.3636
4.7487 45.0 1710 4.6133 0.3641
4.7451 46.0 1748 4.6058 0.3646
4.7378 47.0 1786 4.6009 0.3658
4.7281 48.0 1824 4.5932 0.3658
4.7196 49.0 1862 4.5889 0.3656
4.7091 50.0 1900 4.5814 0.3666
4.7032 51.0 1938 4.5763 0.3668
4.6978 52.0 1976 4.5731 0.3668
4.6908 53.0 2014 4.5682 0.3673
4.6776 54.0 2052 4.5638 0.3673
4.6667 55.0 2090 4.5588 0.3680
4.6662 56.0 2128 4.5535 0.3685
4.6567 57.0 2166 4.5494 0.3697
4.6492 58.0 2204 4.5433 0.3697
4.6442 59.0 2242 4.5421 0.3697
4.632 60.0 2280 4.5368 0.3700
4.6256 61.0 2318 4.5321 0.3705
4.6215 62.0 2356 4.5286 0.3700
4.6142 63.0 2394 4.5240 0.3702
4.6041 64.0 2432 4.5195 0.3710
4.5984 65.0 2470 4.5147 0.3715
4.5919 66.0 2508 4.5116 0.3727
4.5838 67.0 2546 4.5070 0.3724
4.5733 68.0 2584 4.5035 0.3724
4.5642 69.0 2622 4.5007 0.3722
4.5607 70.0 2660 4.4968 0.3719
4.5543 71.0 2698 4.4928 0.3729
4.5502 72.0 2736 4.4897 0.3729
4.5505 73.0 2774 4.4875 0.3737
4.537 74.0 2812 4.4840 0.3732
4.529 75.0 2850 4.4802 0.3746
4.5201 76.0 2888 4.4764 0.3749
4.5176 77.0 2926 4.4729 0.3751
4.5087 78.0 2964 4.4716 0.3751
4.504 79.0 3002 4.4684 0.3744
4.4914 80.0 3040 4.4634 0.3751
4.4907 81.0 3078 4.4616 0.3751
4.483 82.0 3116 4.4578 0.3754
4.4792 83.0 3154 4.4541 0.3741
4.4705 84.0 3192 4.4511 0.3744
4.4647 85.0 3230 4.4488 0.3749
4.4617 86.0 3268 4.4445 0.3751
4.453 87.0 3306 4.4385 0.3751
4.4488 88.0 3344 4.4353 0.3763
4.4424 89.0 3382 4.4322 0.3766
4.433 90.0 3420 4.4300 0.3766
4.4252 91.0 3458 4.4259 0.3763
4.4226 92.0 3496 4.4215 0.3773
4.4144 93.0 3534 4.4189 0.3771
4.4047 94.0 3572 4.4160 0.3771
4.4071 95.0 3610 4.4131 0.3773
4.3975 96.0 3648 4.4095 0.3773
4.3897 97.0 3686 4.4085 0.3771
4.3869 98.0 3724 4.4052 0.3771
4.3751 99.0 3762 4.4021 0.3773
4.3698 100.0 3800 4.3988 0.3768
4.368 101.0 3838 4.3945 0.3768
4.3643 102.0 3876 4.3918 0.3771
4.3552 103.0 3914 4.3893 0.3766
4.3478 104.0 3952 4.3869 0.3776
4.3438 105.0 3990 4.3848 0.3781
4.3362 106.0 4028 4.3820 0.3773
4.3356 107.0 4066 4.3768 0.3778
4.3263 108.0 4104 4.3764 0.3776
4.3238 109.0 4142 4.3732 0.3778
4.3157 110.0 4180 4.3699 0.3781
4.311 111.0 4218 4.3678 0.3781
4.3048 112.0 4256 4.3646 0.3788
4.2955 113.0 4294 4.3640 0.3793
4.2914 114.0 4332 4.3604 0.3793
4.286 115.0 4370 4.3580 0.3790
4.2857 116.0 4408 4.3541 0.3790
4.2776 117.0 4446 4.3527 0.3793
4.2734 118.0 4484 4.3482 0.3803
4.2646 119.0 4522 4.3461 0.3800
4.2632 120.0 4560 4.3446 0.3803
4.2586 121.0 4598 4.3409 0.3807
4.2564 122.0 4636 4.3400 0.3812
4.2423 123.0 4674 4.3357 0.3807
4.2425 124.0 4712 4.3335 0.3807
4.2367 125.0 4750 4.3306 0.3810
4.2301 126.0 4788 4.3292 0.3815
4.2286 127.0 4826 4.3276 0.3812
4.2184 128.0 4864 4.3246 0.3822
4.2156 129.0 4902 4.3210 0.3827
4.2116 130.0 4940 4.3187 0.3834
4.2008 131.0 4978 4.3165 0.3834
4.1995 132.0 5016 4.3134 0.3834
4.19 133.0 5054 4.3136 0.3842
4.1828 134.0 5092 4.3116 0.3842
4.1815 135.0 5130 4.3065 0.3847
4.1771 136.0 5168 4.3051 0.3839
4.1744 137.0 5206 4.3016 0.3847
4.1717 138.0 5244 4.2975 0.3847
4.1616 139.0 5282 4.2966 0.3847
4.1582 140.0 5320 4.2948 0.3847
4.1583 141.0 5358 4.2931 0.3849
4.148 142.0 5396 4.2894 0.3854
4.1417 143.0 5434 4.2861 0.3849
4.1386 144.0 5472 4.2865 0.3861
4.133 145.0 5510 4.2834 0.3861
4.129 146.0 5548 4.2793 0.3864
4.12 147.0 5586 4.2785 0.3861
4.1206 148.0 5624 4.2750 0.3864
4.1226 149.0 5662 4.2744 0.3871
4.1104 150.0 5700 4.2723 0.3866
4.1093 151.0 5738 4.2677 0.3871
4.0989 152.0 5776 4.2654 0.3869
4.1035 153.0 5814 4.2646 0.3878
4.0949 154.0 5852 4.2635 0.3881
4.0921 155.0 5890 4.2606 0.3883
4.0883 156.0 5928 4.2565 0.3886
4.0794 157.0 5966 4.2558 0.3893
4.0754 158.0 6004 4.2530 0.3888
4.0756 159.0 6042 4.2496 0.3893
4.067 160.0 6080 4.2501 0.3888
4.0627 161.0 6118 4.2484 0.3891
4.0586 162.0 6156 4.2439 0.3898
4.0577 163.0 6194 4.2431 0.3893
4.055 164.0 6232 4.2391 0.3895
4.0419 165.0 6270 4.2396 0.3895
4.0411 166.0 6308 4.2365 0.3903
4.0405 167.0 6346 4.2356 0.3908
4.0327 168.0 6384 4.2349 0.3905
4.0262 169.0 6422 4.2312 0.3913
4.0252 170.0 6460 4.2300 0.3913
4.0237 171.0 6498 4.2254 0.3915
4.024 172.0 6536 4.2248 0.3920
4.0137 173.0 6574 4.2218 0.3922
4.0108 174.0 6612 4.2224 0.3927
4.0037 175.0 6650 4.2190 0.3939
4.0021 176.0 6688 4.2180 0.3937
3.9949 177.0 6726 4.2150 0.3942
3.9957 178.0 6764 4.2135 0.3939
3.9923 179.0 6802 4.2094 0.3942
3.9853 180.0 6840 4.2092 0.3949
3.9779 181.0 6878 4.2086 0.3949
3.9826 182.0 6916 4.2045 0.3947
3.9775 183.0 6954 4.2012 0.3949
3.9706 184.0 6992 4.2005 0.3961
3.9672 185.0 7030 4.1992 0.3957
3.9707 186.0 7068 4.1964 0.3966
3.9585 187.0 7106 4.1951 0.3971
3.9552 188.0 7144 4.1927 0.3966
3.9526 189.0 7182 4.1922 0.3966
3.9514 190.0 7220 4.1886 0.3969
3.9464 191.0 7258 4.1886 0.3976
3.9433 192.0 7296 4.1856 0.3981
3.9378 193.0 7334 4.1846 0.3978
3.9362 194.0 7372 4.1831 0.3981
3.9307 195.0 7410 4.1820 0.3981
3.9324 196.0 7448 4.1767 0.3978
3.9223 197.0 7486 4.1794 0.3983
3.9279 198.0 7524 4.1752 0.3986
3.9214 199.0 7562 4.1727 0.3981
3.9122 200.0 7600 4.1746 0.3988
3.9099 201.0 7638 4.1698 0.3996
3.9075 202.0 7676 4.1692 0.3993
3.9095 203.0 7714 4.1661 0.4000
3.9 204.0 7752 4.1637 0.4008
3.9004 205.0 7790 4.1619 0.4003
3.8978 206.0 7828 4.1603 0.4005
3.8918 207.0 7866 4.1583 0.4005
3.8848 208.0 7904 4.1580 0.4008
3.8831 209.0 7942 4.1577 0.4000
3.8821 210.0 7980 4.1550 0.4005
3.8818 211.0 8018 4.1522 0.4008
3.8764 212.0 8056 4.1521 0.4008
3.8704 213.0 8094 4.1491 0.4010
3.8725 214.0 8132 4.1492 0.4010
3.8698 215.0 8170 4.1470 0.4010
3.8654 216.0 8208 4.1465 0.4018
3.8608 217.0 8246 4.1451 0.4020
3.8584 218.0 8284 4.1422 0.4015
3.8546 219.0 8322 4.1412 0.4025
3.8494 220.0 8360 4.1408 0.4022
3.8479 221.0 8398 4.1384 0.4025
3.8463 222.0 8436 4.1365 0.4025
3.8422 223.0 8474 4.1326 0.4030
3.8395 224.0 8512 4.1333 0.4022
3.8369 225.0 8550 4.1338 0.4035
3.8357 226.0 8588 4.1299 0.4047
3.8318 227.0 8626 4.1298 0.4042
3.8258 228.0 8664 4.1298 0.4040
3.8265 229.0 8702 4.1276 0.4044
3.8229 230.0 8740 4.1266 0.4042
3.8139 231.0 8778 4.1253 0.4042
3.8132 232.0 8816 4.1251 0.4047
3.8126 233.0 8854 4.1229 0.4047
3.8074 234.0 8892 4.1216 0.4064
3.8072 235.0 8930 4.1218 0.4066
3.8056 236.0 8968 4.1169 0.4066
3.8038 237.0 9006 4.1169 0.4066
3.8025 238.0 9044 4.1151 0.4066
3.7948 239.0 9082 4.1146 0.4069
3.7929 240.0 9120 4.1120 0.4066
3.7922 241.0 9158 4.1118 0.4069
3.7897 242.0 9196 4.1092 0.4076
3.7877 243.0 9234 4.1080 0.4079
3.7829 244.0 9272 4.1083 0.4071
3.7814 245.0 9310 4.1087 0.4076
3.781 246.0 9348 4.1043 0.4071
3.7728 247.0 9386 4.1022 0.4081
3.779 248.0 9424 4.1015 0.4081
3.7716 249.0 9462 4.1030 0.4079
3.7674 250.0 9500 4.0995 0.4079
3.7665 251.0 9538 4.0991 0.4086
3.7603 252.0 9576 4.1002 0.4074
3.7645 253.0 9614 4.0957 0.4086
3.7622 254.0 9652 4.0959 0.4084
3.7583 255.0 9690 4.0955 0.4084
3.752 256.0 9728 4.0930 0.4086
3.7545 257.0 9766 4.0912 0.4091
3.7447 258.0 9804 4.0923 0.4091
3.7483 259.0 9842 4.0894 0.4086
3.7428 260.0 9880 4.0910 0.4086
3.7407 261.0 9918 4.0877 0.4086
3.7405 262.0 9956 4.0891 0.4091
3.7354 263.0 9994 4.0870 0.4088
3.7353 264.0 10032 4.0856 0.4086
3.7312 265.0 10070 4.0838 0.4091
3.7313 266.0 10108 4.0829 0.4091
3.7264 267.0 10146 4.0827 0.4091
3.7221 268.0 10184 4.0815 0.4093
3.7211 269.0 10222 4.0801 0.4091
3.7232 270.0 10260 4.0787 0.4093
3.718 271.0 10298 4.0780 0.4101
3.7208 272.0 10336 4.0771 0.4108
3.7109 273.0 10374 4.0766 0.4115
3.7146 274.0 10412 4.0739 0.4110
3.7071 275.0 10450 4.0737 0.4118
3.7044 276.0 10488 4.0742 0.4123
3.7094 277.0 10526 4.0719 0.4125
3.7028 278.0 10564 4.0718 0.4120
3.7051 279.0 10602 4.0699 0.4120
3.7011 280.0 10640 4.0681 0.4125
3.6954 281.0 10678 4.0668 0.4120
3.6933 282.0 10716 4.0669 0.4123
3.6935 283.0 10754 4.0638 0.4125
3.6867 284.0 10792 4.0650 0.4125
3.6888 285.0 10830 4.0641 0.4120
3.6843 286.0 10868 4.0638 0.4115
3.6824 287.0 10906 4.0621 0.4125
3.6821 288.0 10944 4.0603 0.4123
3.6802 289.0 10982 4.0622 0.4125
3.6789 290.0 11020 4.0579 0.4128
3.6767 291.0 11058 4.0579 0.4130
3.6751 292.0 11096 4.0582 0.4137
3.6726 293.0 11134 4.0556 0.4137
3.6704 294.0 11172 4.0583 0.4137
3.6703 295.0 11210 4.0556 0.4142
3.6662 296.0 11248 4.0518 0.4147
3.6643 297.0 11286 4.0521 0.4147
3.6623 298.0 11324 4.0544 0.4145
3.6626 299.0 11362 4.0518 0.4147
3.661 300.0 11400 4.0496 0.4147
3.6553 301.0 11438 4.0482 0.4150
3.6573 302.0 11476 4.0472 0.4147
3.6548 303.0 11514 4.0460 0.4152
3.6531 304.0 11552 4.0470 0.4147
3.6549 305.0 11590 4.0461 0.4150
3.6485 306.0 11628 4.0461 0.4147
3.6441 307.0 11666 4.0465 0.4150
3.6438 308.0 11704 4.0425 0.4159
3.6435 309.0 11742 4.0410 0.4157
3.6397 310.0 11780 4.0407 0.4159
3.6363 311.0 11818 4.0424 0.4154
3.6315 312.0 11856 4.0436 0.4154
3.6323 313.0 11894 4.0409 0.4157
3.6386 314.0 11932 4.0386 0.4157
3.6303 315.0 11970 4.0389 0.4154
3.6336 316.0 12008 4.0394 0.4164
3.6281 317.0 12046 4.0389 0.4167
3.6249 318.0 12084 4.0379 0.4176
3.6277 319.0 12122 4.0371 0.4176
3.6232 320.0 12160 4.0353 0.4172
3.6177 321.0 12198 4.0363 0.4176
3.626 322.0 12236 4.0319 0.4174
3.6181 323.0 12274 4.0319 0.4172
3.6183 324.0 12312 4.0329 0.4176
3.6169 325.0 12350 4.0328 0.4176
3.6094 326.0 12388 4.0318 0.4179
3.6138 327.0 12426 4.0294 0.4179
3.6101 328.0 12464 4.0311 0.4181
3.6062 329.0 12502 4.0299 0.4184
3.6093 330.0 12540 4.0276 0.4181
3.6071 331.0 12578 4.0301 0.4181
3.6064 332.0 12616 4.0277 0.4184
3.5982 333.0 12654 4.0288 0.4184
3.6064 334.0 12692 4.0256 0.4179
3.6023 335.0 12730 4.0252 0.4184
3.5992 336.0 12768 4.0240 0.4186
3.5997 337.0 12806 4.0237 0.4189
3.5955 338.0 12844 4.0235 0.4186
3.5929 339.0 12882 4.0233 0.4186
3.5953 340.0 12920 4.0210 0.4189
3.5915 341.0 12958 4.0210 0.4184
3.5835 342.0 12996 4.0226 0.4189
3.5852 343.0 13034 4.0227 0.4189
3.5894 344.0 13072 4.0222 0.4191
3.5864 345.0 13110 4.0227 0.4194
3.5854 346.0 13148 4.0190 0.4194
3.5841 347.0 13186 4.0180 0.4191
3.5821 348.0 13224 4.0189 0.4194
3.5823 349.0 13262 4.0176 0.4191
3.5772 350.0 13300 4.0164 0.4191
3.5827 351.0 13338 4.0147 0.4186
3.5747 352.0 13376 4.0148 0.4194
3.5745 353.0 13414 4.0169 0.4194
3.576 354.0 13452 4.0162 0.4194
3.5723 355.0 13490 4.0123 0.4194
3.5669 356.0 13528 4.0144 0.4196
3.5721 357.0 13566 4.0136 0.4189
3.5725 358.0 13604 4.0124 0.4194
3.5627 359.0 13642 4.0129 0.4196
3.5632 360.0 13680 4.0127 0.4194
3.5641 361.0 13718 4.0104 0.4196
3.5636 362.0 13756 4.0100 0.4194
3.5566 363.0 13794 4.0127 0.4194
3.5556 364.0 13832 4.0131 0.4198
3.5606 365.0 13870 4.0108 0.4194
3.5573 366.0 13908 4.0095 0.4196
3.5603 367.0 13946 4.0079 0.4191
3.5552 368.0 13984 4.0073 0.4191
3.5594 369.0 14022 4.0080 0.4194
3.5557 370.0 14060 4.0067 0.4194
3.5523 371.0 14098 4.0065 0.4196
3.5516 372.0 14136 4.0070 0.4194
3.5466 373.0 14174 4.0073 0.4196
3.5474 374.0 14212 4.0040 0.4194
3.5481 375.0 14250 4.0032 0.4196
3.5496 376.0 14288 4.0051 0.4194
3.5489 377.0 14326 4.0035 0.4194
3.5439 378.0 14364 4.0032 0.4198
3.5464 379.0 14402 4.0029 0.4206
3.5455 380.0 14440 4.0037 0.4198
3.5439 381.0 14478 4.0024 0.4206
3.542 382.0 14516 4.0011 0.4203
3.5366 383.0 14554 4.0011 0.4203
3.5368 384.0 14592 4.0015 0.4206
3.5382 385.0 14630 4.0018 0.4211
3.5358 386.0 14668 4.0002 0.4201
3.5324 387.0 14706 3.9990 0.4198
3.5378 388.0 14744 4.0002 0.4206
3.5334 389.0 14782 3.9985 0.4208
3.5349 390.0 14820 3.9987 0.4211
3.5378 391.0 14858 3.9984 0.4211
3.5304 392.0 14896 3.9977 0.4206
3.5241 393.0 14934 3.9985 0.4213
3.527 394.0 14972 3.9997 0.4211
3.5261 395.0 15010 3.9985 0.4211
3.5233 396.0 15048 3.9983 0.4216
3.5279 397.0 15086 3.9966 0.4213
3.5276 398.0 15124 3.9958 0.4213
3.5214 399.0 15162 3.9957 0.4213
3.5222 400.0 15200 3.9958 0.4211
3.5163 401.0 15238 3.9957 0.4213
3.5208 402.0 15276 3.9953 0.4218
3.5168 403.0 15314 3.9949 0.4218
3.5242 404.0 15352 3.9941 0.4216
3.5205 405.0 15390 3.9937 0.4213
3.5158 406.0 15428 3.9949 0.4218
3.517 407.0 15466 3.9939 0.4213
3.519 408.0 15504 3.9944 0.4216
3.5164 409.0 15542 3.9929 0.4213
3.5133 410.0 15580 3.9925 0.4211
3.5199 411.0 15618 3.9906 0.4211
3.5117 412.0 15656 3.9920 0.4216
3.5151 413.0 15694 3.9906 0.4218
3.5093 414.0 15732 3.9914 0.4218
3.512 415.0 15770 3.9909 0.4216
3.5076 416.0 15808 3.9912 0.4218
3.5059 417.0 15846 3.9916 0.4220
3.5096 418.0 15884 3.9907 0.4213
3.5038 419.0 15922 3.9902 0.4213
3.5089 420.0 15960 3.9895 0.4216
3.5091 421.0 15998 3.9893 0.4213
3.5101 422.0 16036 3.9890 0.4218
3.5061 423.0 16074 3.9900 0.4220
3.5048 424.0 16112 3.9888 0.4218
3.501 425.0 16150 3.9881 0.4218
3.5067 426.0 16188 3.9877 0.4218
3.5037 427.0 16226 3.9866 0.4223
3.5052 428.0 16264 3.9855 0.4223
3.5049 429.0 16302 3.9862 0.4223
3.5017 430.0 16340 3.9873 0.4228
3.5038 431.0 16378 3.9872 0.4228
3.5072 432.0 16416 3.9853 0.4225
3.5009 433.0 16454 3.9849 0.4225
3.5023 434.0 16492 3.9856 0.4228
3.4982 435.0 16530 3.9860 0.4228
3.4927 436.0 16568 3.9859 0.4230
3.4959 437.0 16606 3.9861 0.4230
3.4984 438.0 16644 3.9860 0.4228
3.5005 439.0 16682 3.9847 0.4230
3.4947 440.0 16720 3.9845 0.4230
3.4964 441.0 16758 3.9843 0.4230
3.4955 442.0 16796 3.9844 0.4233
3.4923 443.0 16834 3.9843 0.4233
3.4993 444.0 16872 3.9842 0.4230
3.4889 445.0 16910 3.9846 0.4233
3.487 446.0 16948 3.9855 0.4233
3.4965 447.0 16986 3.9851 0.4233
3.4873 448.0 17024 3.9852 0.4233
3.4936 449.0 17062 3.9847 0.4233
3.494 450.0 17100 3.9841 0.4233
3.4855 451.0 17138 3.9836 0.4233
3.4898 452.0 17176 3.9830 0.4230
3.4866 453.0 17214 3.9831 0.4233
3.4866 454.0 17252 3.9831 0.4235
3.4886 455.0 17290 3.9836 0.4238
3.4874 456.0 17328 3.9838 0.4238
3.486 457.0 17366 3.9838 0.4238
3.4869 458.0 17404 3.9835 0.4235
3.4845 459.0 17442 3.9833 0.4238
3.4849 460.0 17480 3.9825 0.4238
3.4841 461.0 17518 3.9818 0.4235
3.4924 462.0 17556 3.9814 0.4235
3.571 463.0 17594 3.9815 0.4235
3.4811 464.0 17632 3.9813 0.4235
3.4851 465.0 17670 3.9810 0.4235
3.4776 466.0 17708 3.9813 0.4238
3.4849 467.0 17746 3.9810 0.4235
3.4766 468.0 17784 3.9813 0.4238
3.4791 469.0 17822 3.9815 0.4238
3.4814 470.0 17860 3.9813 0.4238
3.4861 471.0 17898 3.9809 0.4238
3.4861 472.0 17936 3.9806 0.4235
3.4825 473.0 17974 3.9809 0.4235
3.4758 474.0 18012 3.9811 0.4235
3.4811 475.0 18050 3.9807 0.4235
3.4831 476.0 18088 3.9808 0.4238
3.4837 477.0 18126 3.9803 0.4238
3.4843 478.0 18164 3.9803 0.4240
3.4825 479.0 18202 3.9802 0.4240
3.4807 480.0 18240 3.9800 0.4240
3.4808 481.0 18278 3.9797 0.4240
3.4805 482.0 18316 3.9797 0.4240
3.4818 483.0 18354 3.9796 0.4240
3.4821 484.0 18392 3.9794 0.4240
3.4802 485.0 18430 3.9794 0.4240
3.4805 486.0 18468 3.9796 0.4240
3.4831 487.0 18506 3.9796 0.4240
3.4846 488.0 18544 3.9798 0.4240
3.4824 489.0 18582 3.9798 0.4240
3.4807 490.0 18620 3.9799 0.4240
3.4809 491.0 18658 3.9799 0.4240
3.4801 492.0 18696 3.9799 0.4238
3.479 493.0 18734 3.9799 0.4238
3.48 494.0 18772 3.9799 0.4238
3.4828 495.0 18810 3.9799 0.4238
3.4812 496.0 18848 3.9799 0.4238
3.4798 497.0 18886 3.9799 0.4238
3.4866 498.0 18924 3.9799 0.4238
3.4785 499.0 18962 3.9799 0.4238
3.4893 500.0 19000 3.9799 0.4238

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
8
Safetensors
Model size
774M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for aayush14/PeptideGPT_non_hemolytic

Base model

nferruz/ProtGPT2
Finetuned
(10)
this model

Collection including aayush14/PeptideGPT_non_hemolytic