mt5-small-task1-dataset4

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2245
  • Accuracy: 0.138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
9.1823 1.0 250 2.2930 0.0
2.763 2.0 500 1.8604 0.0
2.3034 3.0 750 1.6307 0.074
2.0136 4.0 1000 1.6494 0.076
1.8156 5.0 1250 1.4797 0.084
1.6683 6.0 1500 1.4214 0.094
1.5806 7.0 1750 1.3692 0.094
1.5035 8.0 2000 1.3212 0.106
1.4451 9.0 2250 1.2997 0.118
1.4045 10.0 2500 1.2689 0.128
1.3742 11.0 2750 1.2515 0.136
1.3456 12.0 3000 1.2411 0.13
1.325 13.0 3250 1.2264 0.14
1.3226 14.0 3500 1.2229 0.146
1.3035 15.0 3750 1.2245 0.138

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
35
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ZhiguangHan/mt5-small-task1-dataset4

Base model

google/mt5-small
Finetuned
(387)
this model