PEFT
Safetensors
mistral3
Generated from Trainer

Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

# beta11

adapter: lora
base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503
dataset_processes: 32
chat_template: jinja
chat_template_jinja: "{%- set today = strftime_now(\"%Y-%m-%d\") %}\n{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\\nYour knowledge base was last updated on 2023-10-01. The current date is \" + today + \".\\n\\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \\\"What are some good restaurants around me?\\\" => \\\"Where are you?\\\" or \\\"When is the next flight to Tokyo\\\" => \\\"Where do you travel from?\\\")\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n    {%- set system_message = messages[0]['content'] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set system_message = default_system_message %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n    {%- if message['role'] == 'user' %}\n\t    {%- if message['content'] is string %}\n            {{- '[INST]' + message['content'] + '[/INST]' }}\n\t    {%- else %}\n\t\t    {{- '[INST]' }}\n\t\t    {%- for block in message['content'] %}\n\t\t\t    {%- if block['type'] == 'text' %}\n\t\t\t\t    {{- block['text'] }}\n\t\t\t    {%- elif block['type'] == 'image' or block['type'] == 'image_url' %}\n\t\t\t\t    {{- '[IMG]' }}\n\t\t\t\t{%- else %}\n\t\t\t\t    {{- raise_exception('Only text and image blocks are supported in message content!') }}\n\t\t\t\t{%- endif %}\n\t\t\t{%- endfor %}\n\t\t    {{- '[/INST]' }}\n\t\t{%- endif %}\n    {%- elif message['role'] == 'system' %}\n        {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n    {%- elif message['role'] == 'assistant' %}\n        {{- message['content'] + eos_token }}\n    {%- else %}\n        {{- raise_exception('Only user, system and assistant roles are supported!') }}\n    {%- endif %}\n{%- endfor %}"

dataset_prepared_path: ./last_run_prepared
datasets:
- message_property_mappings:
    content: content
    role: role
  path: ZeroAgency/ru-instruct-conversation-v3.1-small
  trust_remote_code: false
  field_messages: messages
  type: chat_template
test_datasets:
- message_property_mappings:
    content: content
    role: role
  path: ZeroAgency/ru-instruct-conversation-v3.1-small
  trust_remote_code: false
  field_messages: messages
  type: chat_template
  split: test

#dataset_exact_deduplication: true

gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false

#learning_rate: 0.0001
learning_rate: 2e-5
lisa_layers_attribute: model.layers
#is_mistral_derived_model: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
lora_alpha: 256
lora_dropout: 0.00
# lora_target_linear: true
lora_r: 256

# lora_mlp_kernel: true
# lora_qkv_kernel: true
# lora_o_kernel: true

lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
#loraplus_lr_embedding: 1.0e-06
lr_scheduler: cosine
#max_prompt_len: 8192
mean_resizing_embeddings: false
micro_batch_size: 8
num_epochs: 1.0
optimizer: adamw_torch_fused
output_dir: ./outputs/zero-mistral-beta11


sample_packing_bin_size: 200
sample_packing_group_size: 100000
save_only_model: false
save_safetensors: true
sequence_len: 8192
min_sample_len: 64
shuffle_merged_datasets: true
skip_prepare_dataset: false
strict: false
train_on_inputs: false


val_set_size: 0.0
weight_decay: 0.01
wandb_project: Zero-Mistral
wandb_name: Zero-Mistral-Small-3.1-beta11
bf16: true
fp16: false
tf32: false
flash_attention: false

save_strategy: epoch
eval_strategry: epoch

logging_steps: 1
save_total_limit: 5
warmup_steps: 0
sample_packing: true
pad_to_sequence_len: true
#group_by_length: true
seed: 42
data_seed: 42

deepspeed: deepspeed_configs/zero1.json
log_with: wandb
trust_remote_code: true
use_fast_tokenizer: true
special_tokens:
  pad_token: "<pad>"

outputs/zero-mistral-beta11

This model is a fine-tuned version of mistralai/Mistral-Small-3.1-24B-Instruct-2503 on the ZeroAgency/ru-instruct-conversation-v3.1-small dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • total_train_batch_size: 48
  • total_eval_batch_size: 48
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
0.6302 1.0 420 0.6220

Framework versions

  • PEFT 0.15.0
  • Transformers 4.50.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
0
Safetensors
Model size
24B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ZeroAgency/zero-mistral-beta11

Dataset used to train ZeroAgency/zero-mistral-beta11