File size: 4,021 Bytes
1409a3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d62c4a
 
 
 
 
1409a3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d144e
1409a3f
 
 
 
 
 
21d144e
3193dc1
 
73480b8
 
6c6750c
 
632228d
 
61e2b06
 
3337532
 
c36f6b4
 
a2684d8
 
107ca20
 
6faeaec
 
45d5d44
 
9276287
 
bd6d209
 
9d62c4a
 
1409a3f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Zemulax/masked-lm-tpu
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Zemulax/masked-lm-tpu

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 8.9625
- Train Accuracy: 0.0229
- Validation Loss: 8.8969
- Validation Accuracy: 0.0221
- Epoch: 28

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 223250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 11750, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 10.2868    | 0.0            | 10.2891         | 0.0                 | 0     |
| 10.2817    | 0.0000         | 10.2764         | 0.0                 | 1     |
| 10.2772    | 0.0000         | 10.2667         | 0.0000              | 2     |
| 10.2604    | 0.0000         | 10.2521         | 0.0                 | 3     |
| 10.2421    | 0.0000         | 10.2282         | 0.0000              | 4     |
| 10.2219    | 0.0            | 10.2010         | 0.0                 | 5     |
| 10.1957    | 0.0            | 10.1669         | 0.0                 | 6     |
| 10.1667    | 0.0000         | 10.1388         | 0.0000              | 7     |
| 10.1278    | 0.0000         | 10.0908         | 0.0000              | 8     |
| 10.0848    | 0.0000         | 10.0405         | 0.0001              | 9     |
| 10.0496    | 0.0002         | 9.9921          | 0.0007              | 10    |
| 9.9940     | 0.0010         | 9.9422          | 0.0039              | 11    |
| 9.9424     | 0.0035         | 9.8765          | 0.0110              | 12    |
| 9.8826     | 0.0092         | 9.8156          | 0.0182              | 13    |
| 9.8225     | 0.0155         | 9.7461          | 0.0209              | 14    |
| 9.7670     | 0.0201         | 9.6768          | 0.0222              | 15    |
| 9.7065     | 0.0219         | 9.6127          | 0.0222              | 16    |
| 9.6352     | 0.0227         | 9.5445          | 0.0220              | 17    |
| 9.5757     | 0.0226         | 9.4795          | 0.0219              | 18    |
| 9.4894     | 0.0232         | 9.3985          | 0.0222              | 19    |
| 9.4277     | 0.0234         | 9.3386          | 0.0222              | 20    |
| 9.3676     | 0.0229         | 9.2753          | 0.0220              | 21    |
| 9.2980     | 0.0229         | 9.2170          | 0.0219              | 22    |
| 9.2361     | 0.0233         | 9.1518          | 0.0219              | 23    |
| 9.1515     | 0.0236         | 9.0827          | 0.0223              | 24    |
| 9.1171     | 0.0228         | 9.0406          | 0.0218              | 25    |
| 9.0447     | 0.0234         | 8.9867          | 0.0218              | 26    |
| 9.0119     | 0.0229         | 8.9307          | 0.0221              | 27    |
| 8.9625     | 0.0229         | 8.8969          | 0.0221              | 28    |


### Framework versions

- Transformers 4.30.1
- TensorFlow 2.12.0
- Tokenizers 0.13.3