Uploaded model

  • Developed by: YuseiNagata
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

実行手順

unslothで学習したaLoRaのアダプタを用いてelyza-tasks-100-TV_0.jsonlの回答を得る手順を示します。 ※本コードはGoogle Colab上での動作を想定しています。

セットアップ

  1. 必要なライブラリをインストール
%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U torch
!pip install -U peft

from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re
  1. Hugging Faceのトークンを指定
HF_TOKEN = "INPUT YOUR HF TOKEN"

モデル・トークナイザの読み込み

model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "YuseiNagata/llm-jp-3-13b-it-202411301642"

dtype = None
load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)
### モデルとアダプタを結合
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

タスクデータ読み込み

### ***環境に合わせてファイルパスを修正すること***
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

推論実行

FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

推論結果をjsonlで保存

json_file_id = re.sub(".*/", "", adapter_id)
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for YuseiNagata/llm-jp-3-13b-it-202411301642

Finetuned
(1141)
this model