Model Card for Model ID

Fine-tuned Llama3-8b model with Lora (trained 1 epoch on colap A100 for experimental purposes)

Base Model: unsloth/llama-3-8b-bnb-4bit

Fine-tuning process video: https://www.youtube.com/watch?v=pK8u4QfdLx0&ab_channel=DavidOndrej

Turkish Fine-tune notebook: https://github.com/yudumpacin/LLM/blob/main/Alpaca_%2B_Llama_3_8b_full_Turkish.ipynb

Original unsloth notebook: https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing

Fine-tuning data :

  • Yudum/turkish-instruct-dataset which includes;
    • open question category of atasoglu/databricks-dolly-15k-tr
    • parsak/alpaca-tr-1k-longest
    • TFLai/Turkish-Alpaca
    • umarigan/GPTeacher-General-Instruct-tr

Usage

from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "Yudum/llama3-lora-turkish", 
        max_seq_length = 2048,
        dtype = None,
        load_in_4bit = True,
    )
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

alpaca_prompt = """Altta bir görevi tanımlayan bir talimat ile daha fazla bilgi sağlayan bir girdi bulunmaktadır. İsteği uygun şekilde tamamlayan bir yanıt yazın.

### Talimat:
{}

### Girdi:
{}

### Yanıt:
{}
"""
inputs = tokenizer(
[
    alpaca_prompt.format(
        "Paris'teki meşhur kulenin ismi nedir?", # instruction
        "", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.