Edit model card

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Checkpoints for OFTSR

cd OFTSR
huggingface-cli download Yuanzhi/OFTSR --local-dir ckpts

put data at ./val_data

########################## FFHQ Generation ##########################

python sample_fm.py --opt configs/ir_fm_ffhq.yml \
        --overrides \
        sample.pre_train_model=ckpts/guided_unet-sigma1.0-no_cond-bs128-loss_l2-lr0.0001-FFHQ-checkpoint_26.pth \
        dataset.val_path='./val_data/ffhq_val_100' \
        sample.num_sample=100 \
        ir.sigma_pertubation=1.0 \
        fm_model.use_cond=false

########################## FFHQ Noiseless Restoration ##########################

#--------------------- multi-step ---------------------

python sample_fm.py --opt configs/ir_fm_ffhq.yml \
        --overrides \
        sample.pre_train_model=ckpts/sr_bicubic-sf4-guided_unet-sigma0.1-bs32-loss_l1-lr0.0001-FFHQ-checkpoint_10.pth \
        dataset.val_path='./val_data/ffhq_val_100' \
        sample.num_sample=100 \
        ir.sigma_y=0. \
        ir.sigma_pertubation=0.1 \
        fm_model.use_cond=true

#--------------------- one-step ---------------------

python sample_fm.py --opt configs/dis_fm_ffhq.yml \
        --overrides \
        sample.pre_train_model=ckpts/sr_bicubic-sf4-guided_unet-sigma0.1-bs32-loss_l1-lr1e-05-distil-v_boot-solver_rk2_0.5-dt0.05-w_distil_1.0-w_bound_0.1-w_align_0.01-FFHQ_DIS-checkpoint_2.pth \
        dataset.val_path='./val_data/ffhq_val_100' \
        sample.num_sample=100 \
        ir.sigma_y=0. \
        ir.sigma_pertubation=0.1 \
        fm_model.use_cond=true
        sample.one_step_t=0.99

########################## FFHQ Noisy Restoration ##########################

#--------------------- multi-step ---------------------

python sample_fm.py --opt configs/ir_fm_ffhq.yml \
        --overrides \
        sample.pre_train_model=ckpts/sr_avp-sf4-sigmay_0.05-guided_unet-sigma0.5-bs128-loss_l1-lr0.0001-FFHQ-checkpoint_23.pth \
        dataset.val_path='./val_data/ffhq_val_100' \
        sample.num_sample=100 \
        ir.sigma_y=0.05 \
        ir.sigma_pertubation=0.5 \
        fm_model.use_cond=true

#--------------------- one-step ---------------------

python sample_fm.py --opt configs/dis_fm_ffhq.yml \
        --overrides \
        sample.pre_train_model=ckpts/sr_avp-sf4-sigmay_0.05-guided_unet-sigma0.5-bs32-loss_l1-lr2e-05-distil-v_boot-solver_rk2_0.5-dt0.05-w_distil_1.0-w_bound_0.1-w_align_0.01-FFHQ_DIS-checkpoint_24.pth \
        dataset.val_path='./val_data/ffhq_val_100' \
        sample.num_sample=100 \
        ir.sigma_y=0.05 \
        ir.sigma_pertubation=0.5 \
        fm_model.use_cond=true
        sample.one_step_t=0.99

########################## DIV2K Noiseless Restoration ##########################

#--------------------- multi-step ---------------------

python sample_fm.py --opt configs/ir_fm_DIV2K.yml \
        --overrides \
        sample.pre_train_model=ckpts/sr_bicubic-sf4-guided_unet-sigma0.2-bs128-loss_l1-lr1e-05-DIV2K-checkpoint_4.pth \
        dataset.val_path='./val_data/DIV2K_valid_HR' \
        sample.num_sample=100 \
        sample.psnr_batch_size=1 \
        ir.sigma_y=0. \
        ir.sigma_pertubation=0.2 \
        fm_model.use_cond=true

#--------------------- one-step ---------------------

python sample_fm.py --opt configs/dis_fm_DIV2K.yml \
        --overrides \
        sample.pre_train_model=ckpts/sr_bicubic-sf4-guided_unet-sigma0.2-bs32-loss_l1-lr1e-05-distil-v_boot-solver_rk2_0.5-dt0.05-w_distil_1.0-w_bound_0.1-w_align_0.01-DIV2K_DIS-checkpoint_5.pth \
        dataset.val_path='./val_data/ffhq_val_100' \
        sample.num_sample=100 \
        sample.psnr_batch_size=1 \
        ir.sigma_y=0. \
        ir.sigma_pertubation=0.2 \
        fm_model.use_cond=true
        sample.one_step_t=0.99

########################## ImageNet Noiseless Restoration ##########################

#--------------------- multi-step ---------------------

python sample_fm.py --opt configs/ir_fm_imagenet.yml \
        --overrides \
        sample.pre_train_model=ckpts/sr_bicubic-sf4-guided_unet-sigma0.2-bs32-loss_l1-lr1e-04-ImageNet-checkpoint_10.pth \
        dataset.val_path='./val_data/imagenet_val_100' \
        sample.num_sample=100 \
        ir.sigma_y=0. \
        ir.sigma_pertubation=0.2 \
        fm_model.use_cond=true

#--------------------- one-step ---------------------

python sample_fm.py --opt configs/dis_fm_imagenet.yml \
        --overrides \
        sample.pre_train_model=ckpts/sr_bicubic-sf4-guided_unet-sigma0.2-bs8-loss_l1-lr1e-04-distil-v_boot-solver_rk2_0.5-dt0.05-w_distil_1.0-w_bound_0.1-w_align_0.01-ImageNet_DIS-checkpoint_10.pth \
        dataset.val_path='./val_data/imagenet_val_100' \
        sample.num_sample=100 \
        ir.sigma_y=0. \
        ir.sigma_pertubation=0.2 \
        fm_model.use_cond=true
        sample.one_step_t=0.99
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .