YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quick Use

import os
import torch 
import json
import argparse
from tqdm import tqdm 
from collections import defaultdict
import torch.nn.functional as F
from time import time
from easydict import EasyDict as edict

from model.mico import *


def load_from_pretrained_dir(pretrain_dir, video_resolution=224, return_modal="full"):

    checkpoint_dir = os.path.join(pretrain_dir,'ckpt')
    file_cfg = edict(json.load(open(os.path.join(pretrain_dir,'log','hps.json'))))
    model_cfg = file_cfg.model_cfg
    checkpoint_ls = [ i for i in os.listdir(checkpoint_dir) if i.startswith('model_step')]
    checkpoint_ls = [int(i.split('_')[2].split('.')[0]) for i in checkpoint_ls]
    checkpoint_ls.sort()    
    step = checkpoint_ls[-1]
        
    checkpoint_name = 'model_step_'+str(step)+'.pt'
    ckpt_file = os.path.join(checkpoint_dir, checkpoint_name)
    checkpoint = torch.load(ckpt_file, map_location = 'cpu')
    print(f'load_from_pretrained: {ckpt_file}')

    new_ckpt = {}
    for k,v in checkpoint.items():
        if 'video' in k:
            new_ckpt[k.replace('video','vision')]=v
        elif 'evaclip_model' in k:
            new_ckpt[k.replace('evaclip_model','vision_encoder')]=v
        elif 'clip_model' in k:    
            new_ckpt[k.replace('clip_model','vision_encoder')]=v
        else:
            new_ckpt[k] = v.float()
    
    checkpoint = new_ckpt

    if model_cfg.frame_embedding_type == 'adaptive':

        if 'vision_frame_embedding' in checkpoint:
            pretrain_embed = checkpoint['vision_frame_embedding']
            if pretrain_embed.shape[1]!=model_cfg.max_vision_sample_num:
                pretrain_embed = F.interpolate(pretrain_embed.permute(0,2,1),model_cfg.max_vision_sample_num,mode='nearest').permute(0,2,1)
                checkpoint['vision_frame_embedding'] = pretrain_embed
        else: 
            pretrain_embed = checkpoint['vision_perceiver.vision_frame_embedding']
            if pretrain_embed.shape[1]!=model_cfg.max_vision_sample_num:
                pretrain_embed = F.interpolate(pretrain_embed.permute(0,2,1),model_cfg.max_vision_sample_num,mode='nearest').permute(0,2,1)
                checkpoint['vision_perceiver.vision_frame_embedding'] = pretrain_embed

        if 'audio_frame_embedding' in checkpoint:
            pretrain_embed_a = checkpoint['audio_frame_embedding']
            if pretrain_embed_a.shape[1]!=model_cfg.max_audio_sample_num:
                pretrain_embed_a = F.interpolate(pretrain_embed_a.permute(0,2,1),model_cfg.max_audio_sample_num,mode='nearest').permute(0,2,1)
                checkpoint['audio_frame_embedding'] = pretrain_embed_a

    if model_cfg.vision_encoder_type.startswith('clip'):
        vision_width = checkpoint["vision_encoder.visual.positional_embedding"].shape[1]
        vision_layers = len([k for k in checkpoint.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
        vision_patch_size = checkpoint["vision_encoder.visual.conv1.weight"].shape[-1]
        
        grid_size = round((checkpoint["vision_encoder.visual.positional_embedding"].shape[0] - 1) ** 0.5)
    
        src  = checkpoint["vision_encoder.visual.positional_embedding"]
        src_cls = src[0:1]
        src_oth = src[1:]
        new_grid_size = model_cfg.vision_resolution // vision_patch_size
        if new_grid_size!=grid_size:
            src_oth = F.interpolate(src_oth.reshape(grid_size,grid_size,vision_width).permute(2,0,1).unsqueeze(0),(new_grid_size,new_grid_size),mode='bilinear')
            src_oth = src_oth[0].permute(1,2,0).reshape(-1,src.shape[-1])
            tgt = torch.cat((src_cls,src_oth),dim=0)
            checkpoint["vision_encoder.visual.positional_embedding"] = tgt

    elif model_cfg.vision_encoder_type.startswith('evaclip'):

        vision_width = checkpoint["vision_encoder.visual.pos_embed"].shape[2]
        vision_layers = len([k for k in checkpoint.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])

        vision_patch_size = checkpoint["vision_encoder.visual.patch_embed.proj.weight"].shape[-1]
        
        grid_size = round((checkpoint["vision_encoder.visual.pos_embed"].shape[1] - 1) ** 0.5)
    
        src  = checkpoint["vision_encoder.visual.pos_embed"][0]
        src_cls = src[0:1]
        src_oth = src[1:]
        new_grid_size = model_cfg.vision_resolution // vision_patch_size
        if new_grid_size!=grid_size:
            src_oth = F.interpolate(src_oth.reshape(grid_size,grid_size,vision_width).permute(2,0,1).unsqueeze(0),(new_grid_size,new_grid_size),mode='bilinear')
            src_oth = src_oth[0].permute(1,2,0).reshape(-1,src.shape[-1])
            tgt = torch.cat((src_cls,src_oth),dim=0)
            checkpoint["vision_encoder.visual.pos_embed"] = tgt.unsqueeze(0)
    else:
        pass

    if return_modal=="full":
        new_ckpt = checkpoint
    elif return_modal=="uni":
        new_ckpt = defaultdict()
        for k in checkpoint.keys():
            if "video_encoder" in k:
                new_k = ".".join(k.split(".")[1:])
                new_ckpt[new_k] = checkpoint[k]
    elif return_modal=="text":
        new_ckpt = defaultdict()
        for k in checkpoint.keys():
            if "multimodal_encoder" in k:
                new_k = ".".join(k.split(".")[1:])
                new_ckpt[new_k] = checkpoint[k]
    else:
        pass

    return new_ckpt, model_cfg


if __name__ == "__main__":
    # import ipdb
    # ipdb.set_trace()
    device = "cuda"
    from model.imageprocessor import ImageProcessor
    pretrain_path = 'MiCo-g' # please check your 
    checkpoint, opts = load_from_pretrained_dir("MiCo-g", video_resolution=224, return_modal="full")
    model = MiCo.from_pretrained(opts,checkpoint).to(device)
    image_file = "example/test.jpeg"
    proc = ImageProcessor(image_resolution=224, image_encoder_type="swin", training=True)
    image_input = proc(image_file).to(device)
    image_input = image_input.unsqueeze(1) # image as a 1 frame video

    video_output = model.forward_vision_encoder(image_input)
    video_output_pooled = model.pool_vision_for_contra(video_output)
    feat_v = model.contra_head_v(video_output_pooled)
    feat_v = F.normalize(feat_v,dim=-1)

    texts = ["a man is skiing in a snowy day.", "it's a hot day"]
    caption_tokens = model.multimodal_encoder.tokenizer(texts,
                                                    padding="max_length",
                                                    truncation=True,
                                                    max_length=30,
                                                    return_tensors="pt")
    caption_tokens = caption_tokens.to(torch.device('cuda'))
    input_ids = caption_tokens.input_ids
    attention_mask = caption_tokens.attention_mask
    caption_output = model.forward_multimodal_encoder(input_ids, attention_mask).sequence_output
    caption_output_pooled = model.pool_text_for_contra(caption_output)
    feat_t = model.contra_head_t(caption_output_pooled) 
    feat_t = F.normalize(feat_t,dim=-1)


    sim_t2v = torch.matmul(feat_t, feat_v.permute(1,0))
    print(sim_t2v)

    video_input = model.get_multimodal_forward_input_vision(video_output)
    slice_output = model.forward_multimodal_encoder(input_ids, attention_mask, video_input).sequence_output
    slice_scores = F.softmax(model.itm_head(slice_output[:,0]),dim=1)[:,1]
    print(slice_scores)


    video_input = model.get_multimodal_forward_input_vision(video_output)
    init_input_ids = torch.ones(video_input.size(0), 1).long().cuda().fill_(model.multimodal_encoder.tokenizer.bos_token_id)
    init_attention_mask = init_input_ids.new_ones(video_input.size(0), 1, 1)
    outputs = model.multimodal_encoder.generate(input_ids=init_input_ids,
                                                                attention_mask=init_attention_mask,
                                                                encoder_hidden_states=video_input,
                                                                max_new_tokens=model.max_caption_len,
                                                                num_beams=model.beam_size,
                                                                eos_token_id=model.multimodal_encoder.tokenizer.sep_token_id,
                                                                pad_token_id=model.multimodal_encoder.tokenizer.pad_token_id,
                                                                length_penalty=0.6) 
    outputs_newgen = outputs[:,1:]
    captions = model.multimodal_encoder.tokenizer.batch_decode(outputs_newgen, skip_special_tokens=True)
    print(captions)

✨ Inspiration of Multimodal Context: Multimedia Brain Cognition

How the human brain performs coherent multimodal cognition?

As outlined in Richard Mayer's Cognitive Theory of Multimedia Learning,our brain processes multimedia signals through two distinct channelsβ€”auditory and visualβ€”in sensory memory, as depicted in Figure(a). The sensory memory integrates these signals with prior knowledge through words, transforming new multimedia information into long-term memory. Notably, 1) multimedia signals in the brain share channels, and 2) words function as the reasoning interface in our brain.

Inspired by these insights, we categorize diverse modalities into two types: knowledge modality and interface modality. Knowledge modalities, primarily derived from raw sensors, contribute knowledge in diverse formats. For example, images and depth maps offer visual knowledge, while audio and video provide auditory and spatiotemporal knowledge. The language modality, developed by humans, is inherently more abstract and naturally functions as the interface modality, facilitating learning, reasoning, and the coordination of knowledge. To this end, we design an omni-modal learning architecture, illustrated in Figure (b), with two distinct branches: one for knowledge modalities and one for the interface modality, i.e. natural language. The knowledge and interface modalities are aligned through a novel generative reasoning method.

πŸš€ MiCo, An omni-modal and scalable pretraining paradigm

We propose collecting large-scale omni-modal paired data, including text, image, video, depth, and normal maps, to learn universal representations.

πŸš€ Evolution of Pretraining Paradigms. Masked modeling (a) has shown great success in single modality, general-purpose understanding. Contrastive learning (b) distinguishes transferable features with modality tuples (such as text-image, text-video, text-audio, etc).

πŸš€πŸš€πŸš€ We aim to achieve general-purpose omni-modal understanding and learn transferable, universal representations in (c).

🌟🌟🌟 The Multimodal Scaling Laws with MiCo: Modalities Help Modalies!

πŸ”“ Pretrained Omni-Modal Models

We will continue to update this model zoo including all scales of ViTs and highly-efficient ConvNets with the MiCo pretraining paradigm

Current Checkpoints
Model Pretraining Scale Modality #Param Google Drive Hugging Face
MiCo 300k steps ViT-g Omni-modal 1.3B ckpt ckpt

πŸ”“ Omni-Modal Dataset Collection

We provdie a detailed doc for preparing the omni-modal dataset step-by-step

⚑ Quick Start

  1. Download MiCo weights
    pip install gdown 
    gdown 1AIQjV1KU8K4OXiO-4gFirxkoxt3twWIq --folder
    python inference_demo.py
    

Citation

If the code and paper help your research, please kindly cite:

@article{zhang2024explore,
  title={Explore the Limits of Omni-modal Pretraining at Scale},
  author={Zhang, Yiyuan and Li, Handong and Liu, Jing and Yue, Xiangyu},
  journal={arXiv preprint arXiv:2406.xxxxx},
  year={2024}
}

License

This project is released under the Apache 2.0 license.

Acknowledgement

We appreciate Dr. Xiaohan Ding for the valuable discussion and suggestions.This code is developed based Meta-Transformer, VAST, DPT, and GeoWizard.

Paper

arxiv.org/abs/2406.09412

Downloads last month
17
Inference API
Unable to determine this model’s pipeline type. Check the docs .