SentenceTransformer based on answerdotai/ModernBERT-base

This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the tekgen-ctsp dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: answerdotai/ModernBERT-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("YesaOuO/ModernBERT-base-CTSP")
# Run inference
sentences = [
    'In 1842 Alvars married the harpist Melanie Lewy, a member of a Vienna-based family of musicians with whom Alvars frequently performed.',
    'Elias Parish Alvars spouse Melanie Lewy, place of death Vienna.',
    'Elias Parish Alvars place of birth Teignmouth.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9166

Training Details

Training Dataset

tekgen-ctsp

  • Dataset: tekgen-ctsp at 8d091eb
  • Size: 1,136,292 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 11 tokens
    • mean: 38.01 tokens
    • max: 128 tokens
    • min: 7 tokens
    • mean: 17.07 tokens
    • max: 47 tokens
    • min: 7 tokens
    • mean: 17.02 tokens
    • max: 47 tokens
  • Samples:
    anchor positive negative
    1976 Swedish Grand Prix was the seventh round of the 1976 Formula One season and the ninth Swedish Grand Prix. 1976 Swedish Grand Prix point in time 13 June 1976, part of 1976 Formula One season. 1976 Swedish Grand Prix pole position Jody Scheckter, winner Jody Scheckter.
    1976 Swedish Grand Prix was the seventh round of the 1976 Formula One season and the ninth Swedish Grand Prix. 1976 Swedish Grand Prix point in time 13 June 1976, part of 1976 Formula One season. 1976 Swedish Grand Prix point in time 13 June 1976, country Sweden.
    1976 Swedish Grand Prix was the seventh round of the 1976 Formula One season and the ninth Swedish Grand Prix. 1976 Swedish Grand Prix point in time 13 June 1976, part of 1976 Formula One season. 1976 Swedish Grand Prix point in time 13 June 1976.
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

tekgen-ctsp

  • Dataset: tekgen-ctsp at 8d091eb
  • Size: 10,866 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 13 tokens
    • mean: 40.18 tokens
    • max: 183 tokens
    • min: 7 tokens
    • mean: 19.82 tokens
    • max: 62 tokens
    • min: 7 tokens
    • mean: 19.82 tokens
    • max: 62 tokens
  • Samples:
    anchor positive negative
    Two men with prior criminal records, Dieter Degowski and Hans-Jürgen Rösner, went on the run for two days through Germany and the Netherlands. Gladbeck hostage crisis country Netherlands, country Germany, participant Hans-Jürgen Rösner, participant Dieter Degowski. Gladbeck hostage crisis end time 18 August 1988, point in time 18 August 1988, country Germany, start time 16 August 1988.
    The Gladbeck hostage crisis (known in Germany as the Gladbeck hostage drama) was a hostage-taking crisis that happened in August 1988 after an armed bank raid in Gladbeck, North Rhine-Westphalia, West Germany. Gladbeck hostage crisis end time 18 August 1988, point in time 18 August 1988, country Germany, start time 16 August 1988. Gladbeck hostage crisis country Netherlands, country Germany, participant Hans-Jürgen Rösner, participant Dieter Degowski.
    The album was originally released only on cassette tape before later being made available for digital download on iTunes and similar digital media stores. Vongole Fisarmonica instance of Album. Vongole Fisarmonica performer Those Darn Accordions, publication date 01 January 1992, instance of Album.
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • learning_rate: 8e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.05
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 8e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss YesaOuO/TEKGEN-CTSP_cosine_accuracy
-1 -1 - 0.6585
0.2252 500 0.6404 -
0.4505 1000 0.212 -
0.6757 1500 0.1764 -
0.9009 2000 0.1562 -
-1 -1 - 0.9166

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.3.2
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
Downloads last month
0
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for YesaOuO/ModernBERT-base-CTSP

Finetuned
(435)
this model

Dataset used to train YesaOuO/ModernBERT-base-CTSP

Evaluation results