MyPoliBERT-ver03

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2439
  • Democracy F1: 0.9216
  • Democracy Accuracy: 0.9287
  • Economy F1: 0.9057
  • Economy Accuracy: 0.9084
  • Race F1: 0.9429
  • Race Accuracy: 0.9458
  • Leadership F1: 0.8377
  • Leadership Accuracy: 0.8396
  • Development F1: 0.8682
  • Development Accuracy: 0.8778
  • Corruption F1: 0.9283
  • Corruption Accuracy: 0.9326
  • Instability F1: 0.9105
  • Instability Accuracy: 0.9181
  • Safety F1: 0.9073
  • Safety Accuracy: 0.9092
  • Administration F1: 0.8761
  • Administration Accuracy: 0.8875
  • Education F1: 0.9559
  • Education Accuracy: 0.9578
  • Religion F1: 0.9464
  • Religion Accuracy: 0.9482
  • Environment F1: 0.9753
  • Environment Accuracy: 0.9760
  • Overall F1: 0.9147
  • Overall Accuracy: 0.9191

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 16
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Democracy F1 Democracy Accuracy Economy F1 Economy Accuracy Race F1 Race Accuracy Leadership F1 Leadership Accuracy Development F1 Development Accuracy Corruption F1 Corruption Accuracy Instability F1 Instability Accuracy Safety F1 Safety Accuracy Administration F1 Administration Accuracy Education F1 Education Accuracy Religion F1 Religion Accuracy Environment F1 Environment Accuracy Overall F1 Overall Accuracy
No log 1.0 169 0.3705 0.8469 0.8947 0.8597 0.8797 0.8721 0.9001 0.7362 0.7790 0.7856 0.8293 0.8657 0.8953 0.8488 0.8821 0.8559 0.8693 0.7863 0.8490 0.9008 0.9252 0.8963 0.9144 0.9307 0.9471 0.8488 0.8804
No log 2.0 338 0.3281 0.8524 0.8968 0.8675 0.8869 0.8893 0.9107 0.7786 0.8048 0.8049 0.8425 0.8685 0.9006 0.8550 0.8897 0.8701 0.8847 0.8019 0.8539 0.9177 0.9357 0.9166 0.9287 0.9455 0.9556 0.8640 0.8909
0.3523 3.0 507 0.3011 0.8783 0.9077 0.8832 0.8955 0.9178 0.9281 0.8126 0.8238 0.8165 0.8487 0.8894 0.9105 0.8755 0.8988 0.8824 0.8934 0.8208 0.8630 0.9239 0.9389 0.9292 0.9365 0.9423 0.9536 0.8810 0.8999
0.3523 4.0 676 0.2837 0.8798 0.9090 0.8885 0.8986 0.9226 0.9322 0.8167 0.8293 0.8342 0.8613 0.9001 0.9164 0.8776 0.9012 0.8839 0.8956 0.8245 0.8659 0.9403 0.9478 0.9357 0.9411 0.9522 0.9593 0.8880 0.9048
0.3523 5.0 845 0.2709 0.8934 0.9155 0.8972 0.9051 0.9316 0.9387 0.8271 0.8355 0.8471 0.8665 0.9085 0.9224 0.8891 0.9071 0.8910 0.9003 0.8468 0.8769 0.9439 0.9500 0.9400 0.9441 0.9668 0.9695 0.8985 0.9110
0.2577 6.0 1014 0.2641 0.9023 0.9192 0.8994 0.9047 0.9357 0.9413 0.8300 0.8344 0.8498 0.8689 0.9155 0.9253 0.8995 0.9112 0.8975 0.9027 0.8659 0.8869 0.9450 0.9510 0.9394 0.9432 0.9701 0.9721 0.9042 0.9134
0.2577 7.0 1183 0.2573 0.9088 0.9233 0.8999 0.9038 0.9387 0.9434 0.8316 0.8351 0.8608 0.8724 0.9202 0.9255 0.9047 0.9133 0.9021 0.9051 0.8685 0.8806 0.9499 0.9541 0.9422 0.9454 0.9719 0.9733 0.9083 0.9146
0.2577 8.0 1352 0.2520 0.9118 0.9239 0.9052 0.9101 0.9420 0.9454 0.8304 0.8358 0.8590 0.8735 0.9223 0.9287 0.9046 0.9146 0.9021 0.9068 0.8713 0.8860 0.9518 0.9558 0.9444 0.9467 0.9736 0.9747 0.9099 0.9168
0.2107 9.0 1521 0.2506 0.9137 0.9244 0.9026 0.9075 0.9417 0.9456 0.8345 0.8373 0.8644 0.8774 0.9242 0.9307 0.9040 0.9151 0.9031 0.9058 0.8753 0.8875 0.9528 0.9560 0.9442 0.9467 0.9739 0.9751 0.9112 0.9174
0.2107 10.0 1690 0.2467 0.9170 0.9276 0.9027 0.9062 0.9430 0.9458 0.8376 0.8386 0.8625 0.8754 0.9228 0.9289 0.9106 0.9181 0.9063 0.9099 0.8760 0.8871 0.9542 0.9558 0.9429 0.9452 0.9749 0.9759 0.9125 0.9179
0.2107 11.0 1859 0.2450 0.9175 0.9278 0.9049 0.9083 0.9427 0.9460 0.8340 0.8383 0.8635 0.8765 0.9251 0.9300 0.9082 0.9166 0.9068 0.9099 0.8729 0.8882 0.9532 0.9562 0.9444 0.9469 0.9741 0.9753 0.9123 0.9183
0.1842 12.0 2028 0.2464 0.9215 0.9285 0.9044 0.9079 0.9428 0.9458 0.8375 0.8410 0.8645 0.8745 0.9276 0.9324 0.9105 0.9166 0.9053 0.9064 0.8737 0.8860 0.9558 0.9575 0.9448 0.9465 0.9744 0.9755 0.9136 0.9182
0.1842 13.0 2197 0.2440 0.9195 0.9278 0.9058 0.9088 0.9422 0.9456 0.8369 0.8405 0.8681 0.8778 0.9284 0.9328 0.9091 0.9164 0.9073 0.9092 0.8743 0.8869 0.9564 0.9584 0.9448 0.9465 0.9751 0.9759 0.9140 0.9189
0.1842 14.0 2366 0.2443 0.9220 0.9285 0.9053 0.9084 0.9425 0.9454 0.8369 0.8397 0.8652 0.8761 0.9281 0.9331 0.9100 0.9174 0.9066 0.9083 0.8735 0.8865 0.9561 0.9578 0.9452 0.9469 0.9750 0.9759 0.9138 0.9187
0.169 15.0 2535 0.2441 0.9217 0.9289 0.9057 0.9083 0.9428 0.9458 0.8364 0.8375 0.8657 0.8761 0.9277 0.9320 0.9103 0.9179 0.9072 0.9090 0.8758 0.8875 0.9551 0.9571 0.9458 0.9478 0.9754 0.9762 0.9141 0.9187
0.169 15.9080 2688 0.2439 0.9216 0.9287 0.9057 0.9084 0.9429 0.9458 0.8377 0.8396 0.8682 0.8778 0.9283 0.9326 0.9105 0.9181 0.9073 0.9092 0.8761 0.8875 0.9559 0.9578 0.9464 0.9482 0.9753 0.9760 0.9147 0.9191

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
49
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for YagiASAFAS/MyPoliBERT-ver02

Finetuned
(3518)
this model