MSPoliBERT-12

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2936
  • Democracy F1: 0.9392
  • Democracy Accuracy: 0.9426
  • Economy F1: 0.9141
  • Economy Accuracy: 0.9156
  • Race F1: 0.9303
  • Race Accuracy: 0.9331
  • Leadership F1: 0.7696
  • Leadership Accuracy: 0.7688
  • Development F1: 0.8747
  • Development Accuracy: 0.8790
  • Corruption F1: 0.9411
  • Corruption Accuracy: 0.9441
  • Instability F1: 0.9093
  • Instability Accuracy: 0.9141
  • Safety F1: 0.9291
  • Safety Accuracy: 0.9305
  • Administration F1: 0.8768
  • Administration Accuracy: 0.8853
  • Education F1: 0.9538
  • Education Accuracy: 0.9557
  • Religion F1: 0.9338
  • Religion Accuracy: 0.9349
  • Environment F1: 0.9807
  • Environment Accuracy: 0.9819
  • Overall F1: 0.9127
  • Overall Accuracy: 0.9155

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Democracy F1 Democracy Accuracy Economy F1 Economy Accuracy Race F1 Race Accuracy Leadership F1 Leadership Accuracy Development F1 Development Accuracy Corruption F1 Corruption Accuracy Instability F1 Instability Accuracy Safety F1 Safety Accuracy Administration F1 Administration Accuracy Education F1 Education Accuracy Religion F1 Religion Accuracy Environment F1 Environment Accuracy Overall F1 Overall Accuracy
0.4282 1.0 841 0.2914 0.9080 0.9293 0.8960 0.9088 0.9066 0.9221 0.7142 0.7328 0.8409 0.8585 0.9253 0.9287 0.9013 0.9076 0.9076 0.9097 0.8349 0.8651 0.9376 0.9483 0.9147 0.9233 0.9671 0.9744 0.8878 0.9007
0.2346 2.0 1682 0.2568 0.9172 0.9364 0.9016 0.9105 0.9172 0.9254 0.7547 0.7652 0.8586 0.8648 0.9265 0.9346 0.8974 0.9111 0.9272 0.9296 0.8539 0.8802 0.9451 0.9519 0.9264 0.9308 0.9767 0.9786 0.9002 0.9099
0.1601 3.0 2523 0.2519 0.9260 0.9355 0.9108 0.9186 0.9228 0.9278 0.7575 0.7620 0.8748 0.8808 0.9360 0.9415 0.9067 0.9135 0.9285 0.9316 0.8609 0.8799 0.9518 0.9560 0.9301 0.9337 0.9801 0.9810 0.9072 0.9135
0.1169 4.0 3364 0.2627 0.9315 0.9412 0.9120 0.9192 0.9214 0.9284 0.7637 0.7646 0.8757 0.8799 0.9411 0.9459 0.9071 0.9123 0.9296 0.9328 0.8685 0.8820 0.9512 0.9542 0.9335 0.9364 0.9802 0.9810 0.9096 0.9148
0.0798 5.0 4205 0.2729 0.9368 0.9412 0.9129 0.9159 0.9284 0.9328 0.7642 0.7652 0.8760 0.8799 0.9414 0.9435 0.9078 0.9126 0.9277 0.9290 0.8703 0.8743 0.9565 0.9581 0.9323 0.9349 0.9799 0.9801 0.9112 0.9140
0.0565 6.0 5046 0.2821 0.9357 0.9403 0.9144 0.9159 0.9266 0.9284 0.7687 0.7685 0.8748 0.8785 0.9384 0.9403 0.9115 0.9153 0.9266 0.9299 0.8693 0.8814 0.9557 0.9578 0.9321 0.9325 0.9790 0.9813 0.9111 0.9142
0.0443 7.0 5887 0.2914 0.9375 0.9406 0.9150 0.9156 0.9293 0.9322 0.7719 0.7715 0.8727 0.8767 0.9412 0.9447 0.9103 0.9144 0.9292 0.9316 0.8761 0.8832 0.9558 0.9569 0.9322 0.9334 0.9797 0.9813 0.9126 0.9152
0.0361 8.0 6728 0.2936 0.9392 0.9426 0.9141 0.9156 0.9303 0.9331 0.7696 0.7688 0.8747 0.8790 0.9411 0.9441 0.9093 0.9141 0.9291 0.9305 0.8768 0.8853 0.9538 0.9557 0.9338 0.9349 0.9807 0.9819 0.9127 0.9155

Framework versions

  • Transformers 4.18.0
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.12.1
Downloads last month
9
Inference API
Unable to determine this model's library. Check the docs .