YKXBCi's picture
Training in progress epoch 2
be656ff
|
raw
history blame
2.33 kB
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: YKXBCi/vit-base-patch16-224-in21k-euroSat
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# YKXBCi/vit-base-patch16-224-in21k-euroSat
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0495
- Train Accuracy: 0.9948
- Train Top-3-accuracy: 0.9999
- Validation Loss: 0.0782
- Validation Accuracy: 0.9839
- Validation Top-3-accuracy: 1.0
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3585, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 0.4593 | 0.9478 | 0.9912 | 0.1558 | 0.9809 | 0.9995 | 0 |
| 0.1008 | 0.9876 | 0.9997 | 0.0855 | 0.9856 | 1.0 | 1 |
| 0.0495 | 0.9948 | 0.9999 | 0.0782 | 0.9839 | 1.0 | 2 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.6.0
- Datasets 2.1.0
- Tokenizers 0.12.1