File size: 2,834 Bytes
e8081e9
0783298
 
e8081e9
 
2652e27
 
 
 
 
 
 
 
 
 
 
 
5da02f5
 
 
2652e27
5da02f5
 
2652e27
 
 
 
 
 
 
 
5da02f5
 
 
2652e27
5da02f5
 
2652e27
 
 
 
 
 
 
 
 
 
 
 
 
 
5da02f5
 
 
2652e27
5da02f5
 
2652e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8081e9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: openai/whisper-tiny.en
library_name: transformers.js
---


# Whisper

[openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) with ONNX weights to be compatible with [Transformers.js](https://huggingface.co/docs/transformers.js).


## Usage

**Example:** Transcribe English.


```js
// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';

let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';

// Create translation pipeline
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url);
// { text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country." }
```

**Example:** Transcribe English w/ timestamps.

```js
// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';

let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';

// Create translation pipeline
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url, { return_timestamps: true });
// {
//   text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country."
//   chunks: [
//     { timestamp: [0, 8],  text: " And so my fellow Americans ask not what your country can do for you" }
//     { timestamp: [8, 11], text: " ask what you can do for your country." }
//   ]
// }
```

**Example:** Transcribe English w/ word-level timestamps.

```js
// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';

let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';

// Create translation pipeline
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url, { return_timestamps: 'word' });
// {
//   "text": " And so my fellow Americans ask not what your country can do for you ask what you can do for your country.",
//   "chunks": [
//     { "text": " And", "timestamp": [0, 0.78] },
//     { "text": " so", "timestamp": [0.78, 1.06] },
//     { "text": " my", "timestamp": [1.06, 1.46] },
//     ...
//     { "text": " for", "timestamp": [9.72, 9.92] },
//     { "text": " your", "timestamp": [9.92, 10.22] },
//     { "text": " country.", "timestamp": [10.22, 13.5] }
//   ]
// }
```

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).