File size: 3,081 Bytes
a777aea cfc4d51 a777aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
library_name: transformers.js
---
https://huggingface.co/BAAI/bge-small-en-v1.5 with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
You can then use the model to compute embeddings, as follows:
```js
import { pipeline } from '@xenova/transformers';
// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/bge-small-en-v1.5');
// Compute sentence embeddings
const texts = [ 'Hello world.', 'Example sentence.'];
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
console.log(embeddings);
// Tensor {
// dims: [ 2, 384 ],
// type: 'float32',
// data: Float32Array(768) [ -0.04314826801419258, -0.029488801956176758, ... ],
// size: 768
// }
console.log(embeddings.tolist()); // Convert embeddings to a JavaScript list
// [
// [ -0.04314826801419258, -0.029488801956176758, 0.027080481871962547, ... ],
// [ -0.03605496883392334, 0.01643390767276287, 0.008982205763459206, ... ]
// ]
```
You can also use the model for retrieval. For example:
```js
import { pipeline, cos_sim } from '@xenova/transformers';
// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/bge-small-en-v1.5');
// List of documents you want to embed
const texts = [
'Hello world.',
'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.',
'I love pandas so much!',
];
// Compute sentence embeddings
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
// Prepend recommended query instruction for retrieval.
const query_prefix = 'Represent this sentence for searching relevant passages: '
const query = query_prefix + 'What is a panda?';
const query_embeddings = await extractor(query, { pooling: 'mean', normalize: true });
// Sort by cosine similarity score
const scores = embeddings.tolist().map(
(embedding, i) => ({
id: i,
score: cos_sim(query_embeddings.data, embedding),
text: texts[i],
})
).sort((a, b) => b.score - a.score);
console.log(scores);
// [
// { id: 1, score: 0.7995888037433755, text: 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.' },
// { id: 2, score: 0.6911046766159414, text: 'I love pandas so much!' },
// { id: 0, score: 0.39066192695524765, text: 'Hello world.' }
// ]
```
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |