File size: 11,320 Bytes
8cf9b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
license: other
license_name: deepseek-license
license_link: LICENSE
---
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<!-- markdownlint-disable no-duplicate-header -->

<div align="center">
  <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" />
</div>
<hr>
<div align="center" style="line-height: 1;">
  <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
    <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V2-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
    <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

<div align="center" style="line-height: 1;">
  <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
    <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
    <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
    <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

<div align="center" style="line-height: 1;">
  <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;">
    <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;">
    <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>
<p align="center">
  <a href="#4-api-platform">API Platform</a> |
  <a href="#5-how-to-run-locally">How to Use</a> |
  <a href="#6-license">License</a> |
</p>


<p align="center">
  <a href="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/paper.pdf"><b>Paper Link</b>👁️</a>
</p>

# DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence

## 1. Introduction
We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. 

<p align="center">
  <img width="100%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/performance.png?raw=true">
</p>


In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks.  The list of supported programming languages can be found [here](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/supported_langs.txt).

## 2. Model Downloads

We release the DeepSeek-Coder-V2 with 16B and 236B parameters based on the [DeepSeekMoE](https://arxiv.org/pdf/2401.06066) framework, which has actived parameters of only 2.4B and 21B , including base and instruct models, to the public. 

<div align="center">

|            **Model**            | **#Total Params** | **#Active Params** | **Context Length** |                         **Download**                         |
| :-----------------------------: | :---------------: | :----------------: | :----------------: | :----------------------------------------------------------: |
|   DeepSeek-Coder-V2-Lite-Base   |        16B        |        2.4B        |        128k        | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) |
| DeepSeek-Coder-V2-Lite-Instruct |        16B        |        2.4B        |        128k        | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) |
|     DeepSeek-Coder-V2-Base      |       236B        |        21B         |        128k        | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Base) |
|   DeepSeek-Coder-V2-Instruct    |       236B        |        21B         |        128k        | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct) |

</div>


## 3. Chat Website

You can chat with the DeepSeek-Coder-V2 on DeepSeek's official website: [coder.deepseek.com](https://coder.deepseek.com/sign_in)

## 4. API Platform
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/), and you can also pay-as-you-go at an unbeatable price.
<p align="center">
  <img width="40%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/model_price.jpg?raw=true">
</p>


## 5. How to run locally
**Here, we provide some examples of how to use DeepSeek-Coder-V2-Lite model. If you want to utilize DeepSeek-Coder-V2 in BF16 format for inference, 80GB*8 GPUs are required.**

### Inference with Huggingface's Transformers
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.

#### Code Completion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

#### Code Insertion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = """<|fim▁begin|>def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
<|fim▁hole|>
        if arr[i] < pivot:
            left.append(arr[i])
        else:
            right.append(arr[i])
    return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
```

#### Chat Completion

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
messages=[
    { 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# tokenizer.eos_token_id is the id of <|end▁of▁sentence|>  token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
```



The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.

An example of chat template is as belows:

```bash
<|begin▁of▁sentence|>User: {user_message_1}

Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}

Assistant:
```

You can also add an optional system message:

```bash
<|begin▁of▁sentence|>{system_message}

User: {user_message_1}

Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}

Assistant:
```

### Inference with vLLM (recommended)
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.

```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 8192, 1
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you?"}],
    [{"role": "user", "content": "write a quick sort algorithm in python."}],
    [{"role": "user", "content": "Write a piece of quicksort code in C++."}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```



## 6. License

This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-CODE). The use of DeepSeek-Coder-V2 Base/Instruct models is subject to [the Model License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL). DeepSeek-Coder-V2 series (including Base and Instruct) supports commercial use.


## 7. Contact
If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).