File size: 1,048 Bytes
0467378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
# -*- coding: utf-8 -*-
# @Time : 2024/7/21 下午5:11
# @Author : xiaoshun
# @Email : 3038523973@qq.com
# @File : scnn.py
# @Software: PyCharm
# 论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0924271624000352?via%3Dihub#fn1
import torch
import torch.nn as nn
import torch.nn.functional as F
class SCNN(nn.Module):
def __init__(self, in_channels=3, num_classes=2, dropout_p=0.5):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=1)
self.conv2 = nn.Conv2d(64, num_classes, kernel_size=1)
self.conv3 = nn.Conv2d(num_classes, num_classes, kernel_size=3, padding=1)
self.dropout = nn.Dropout2d(p=dropout_p)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.dropout(x)
x = self.conv2(x)
x = self.conv3(x)
return x
if __name__ == '__main__':
model = SCNN(num_classes=7)
fake_img = torch.randn((2, 3, 224, 224))
out = model(fake_img)
print(out.shape)
# torch.Size([2, 7, 224, 224]) |