XavierJiezou
commited on
Commit
•
0467378
1
Parent(s):
2e198d7
Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +238 -0
- checkpoints/cloud-adapter/gf1_full_weight.pth +3 -0
- checkpoints/cloud-adapter/gf2_full_weight.pth +3 -0
- checkpoints/cloud-adapter/hrc_whu_full_weight.pth +3 -0
- checkpoints/cloud-adapter/l1c_full_weight.pth +3 -0
- checkpoints/cloud-adapter/l2a_full_weight.pth +3 -0
- checkpoints/cloud-adapter/l8_full_weight.pth +3 -0
- cloud-adapter-configs/binary_classes_256x256.py +205 -0
- cloud-adapter-configs/multi_classes_512x512.py +205 -0
- cloud_adapter/__init__.py +0 -0
- cloud_adapter/__pycache__/__init__.cpython-38.pyc +0 -0
- cloud_adapter/__pycache__/cloud_adapter.cpython-38.pyc +0 -0
- cloud_adapter/__pycache__/cloud_adapter_dinov2.cpython-38.pyc +0 -0
- cloud_adapter/__pycache__/dino_v2.cpython-38.pyc +0 -0
- cloud_adapter/__pycache__/utils.cpython-38.pyc +0 -0
- cloud_adapter/cdnetv1.py +389 -0
- cloud_adapter/cdnetv2.py +693 -0
- cloud_adapter/cloud_adapter.py +590 -0
- cloud_adapter/cloud_adapter_dinov2.py +115 -0
- cloud_adapter/dbnet.py +680 -0
- cloud_adapter/dino_layers/__init__.py +11 -0
- cloud_adapter/dino_layers/__pycache__/__init__.cpython-38.pyc +0 -0
- cloud_adapter/dino_layers/__pycache__/attention.cpython-38.pyc +0 -0
- cloud_adapter/dino_layers/__pycache__/block.cpython-38.pyc +0 -0
- cloud_adapter/dino_layers/__pycache__/dino_head.cpython-38.pyc +0 -0
- cloud_adapter/dino_layers/__pycache__/drop_path.cpython-38.pyc +0 -0
- cloud_adapter/dino_layers/__pycache__/layer_scale.cpython-38.pyc +0 -0
- cloud_adapter/dino_layers/__pycache__/mlp.cpython-38.pyc +0 -0
- cloud_adapter/dino_layers/__pycache__/patch_embed.cpython-38.pyc +0 -0
- cloud_adapter/dino_layers/__pycache__/swiglu_ffn.cpython-38.pyc +0 -0
- cloud_adapter/dino_layers/attention.py +89 -0
- cloud_adapter/dino_layers/block.py +260 -0
- cloud_adapter/dino_layers/dino_head.py +58 -0
- cloud_adapter/dino_layers/drop_path.py +34 -0
- cloud_adapter/dino_layers/layer_scale.py +27 -0
- cloud_adapter/dino_layers/mlp.py +40 -0
- cloud_adapter/dino_layers/patch_embed.py +88 -0
- cloud_adapter/dino_layers/swiglu_ffn.py +72 -0
- cloud_adapter/dino_v2.py +353 -0
- cloud_adapter/hrcloudnet.py +751 -0
- cloud_adapter/kappamask.py +152 -0
- cloud_adapter/mcdnet.py +435 -0
- cloud_adapter/scnn.py +36 -0
- cloud_adapter/unetmobv2.py +31 -0
- cloud_adapter/utils.py +58 -0
- example_inputs/gf1/11.png +0 -0
- example_inputs/gf1/48.png +0 -0
- example_inputs/gf1/9.png +0 -0
- example_inputs/gf2/160.png +0 -0
- example_inputs/gf2/2.png +0 -0
app.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mmseg.apis import init_model
|
2 |
+
from typing import List
|
3 |
+
from glob import glob
|
4 |
+
from cloud_adapter.cloud_adapter_dinov2 import CloudAdapterDinoVisionTransformer
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from mmseg.models.segmentors.encoder_decoder import EncoderDecoder
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
import os
|
11 |
+
|
12 |
+
|
13 |
+
class CloudAdapterGradio:
|
14 |
+
def __init__(self, config_path=None, checkpoint_path=None, device="cpu", example_inputs=None, num_classes=2, palette=None):
|
15 |
+
self.config_path = config_path
|
16 |
+
self.checkpoint_path = checkpoint_path
|
17 |
+
self.device = device
|
18 |
+
self.model: EncoderDecoder = init_model(
|
19 |
+
self.config_path, self.checkpoint_path, device=self.device)
|
20 |
+
self.model.eval()
|
21 |
+
self.example_inputs = example_inputs
|
22 |
+
self.img_size = 256 if num_classes == 2 else 512
|
23 |
+
self.palette = palette
|
24 |
+
self.legend = self.html_legend(num_classes=num_classes)
|
25 |
+
self.name_mapping = {
|
26 |
+
"KappaMask": "kappamask",
|
27 |
+
"CDNetv1": "cdnetv1",
|
28 |
+
"CDNetv2": "cdnetv2",
|
29 |
+
"HRCloudNet": "hrcloudnet",
|
30 |
+
"MCDNet": "mcdnet",
|
31 |
+
"SCNN": "scnn",
|
32 |
+
"DBNet": "dbnet",
|
33 |
+
"UNetMobv2": "unetmobv2",
|
34 |
+
"Cloud-Adapter": "cloud-adapter",
|
35 |
+
}
|
36 |
+
|
37 |
+
self.create_ui()
|
38 |
+
|
39 |
+
def html_legend(self, num_classes=2):
|
40 |
+
if num_classes == 2:
|
41 |
+
return """
|
42 |
+
<div style="margin-top: 10px; text-align: left; display: flex; align-items: center; gap: 20px;justify-content: center;">
|
43 |
+
<div style="display: flex; align-items: center;">
|
44 |
+
<div style="width: 20px; height: 20px; background-color: rgb(79, 253, 199); margin-right: 10px; "></div>
|
45 |
+
<span>Clear</span>
|
46 |
+
</div>
|
47 |
+
<div style="display: flex; align-items: center;">
|
48 |
+
<div style="width: 20px; height: 20px; background-color: rgb(77, 2, 115); margin-right: 10px; "></div>
|
49 |
+
<span>Cloud</span>
|
50 |
+
</div>
|
51 |
+
</div>
|
52 |
+
"""
|
53 |
+
return """
|
54 |
+
<div style="margin-top: 10px; text-align: left; display: flex; align-items: center; gap: 20px;justify-content: center;">
|
55 |
+
<div style="display: flex; align-items: center;">
|
56 |
+
<div style="width: 20px; height: 20px; background-color: rgb(79, 253, 199); margin-right: 10px; "></div>
|
57 |
+
<span>Clear Sky</span>
|
58 |
+
</div>
|
59 |
+
<div style="display: flex; align-items: center;">
|
60 |
+
<div style="width: 20px; height: 20px; background-color: rgb(77, 2, 115); margin-right: 10px; "></div>
|
61 |
+
<span>Thick Cloud</span>
|
62 |
+
</div>
|
63 |
+
<div style="display: flex; align-items: center;">
|
64 |
+
<div style="width: 20px; height: 20px; background-color: rgb(251, 255, 41); margin-right: 10px; "></div>
|
65 |
+
<span>Thin Cloud</span>
|
66 |
+
</div>
|
67 |
+
<div style="display: flex; align-items: center;">
|
68 |
+
<div style="width: 20px; height: 20px; background-color: rgb(221, 53, 223); margin-right: 10px; "></div>
|
69 |
+
<span>Cloud Shadow</span>
|
70 |
+
</div>
|
71 |
+
</div>
|
72 |
+
"""
|
73 |
+
|
74 |
+
def create_ui(self):
|
75 |
+
with gr.Row():
|
76 |
+
# 左侧:输入图片和按钮
|
77 |
+
with gr.Column(scale=1): # 左侧列
|
78 |
+
in_image = gr.Image(
|
79 |
+
label='Input Image',
|
80 |
+
sources='upload',
|
81 |
+
elem_classes='input_image',
|
82 |
+
interactive=True,
|
83 |
+
type="pil",
|
84 |
+
)
|
85 |
+
with gr.Row():
|
86 |
+
run_button = gr.Button(
|
87 |
+
'Run',
|
88 |
+
variant="primary",
|
89 |
+
)
|
90 |
+
# 示例输入列表
|
91 |
+
gr.Examples(
|
92 |
+
examples=self.example_inputs,
|
93 |
+
inputs=in_image,
|
94 |
+
label="Example Inputs"
|
95 |
+
)
|
96 |
+
|
97 |
+
# 右侧:输出图片
|
98 |
+
with gr.Column(scale=1): # 右侧列
|
99 |
+
with gr.Column():
|
100 |
+
# 输出图片
|
101 |
+
out_image = gr.Image(
|
102 |
+
label='Output Image',
|
103 |
+
elem_classes='output_image',
|
104 |
+
interactive=False
|
105 |
+
)
|
106 |
+
# 图例
|
107 |
+
legend = gr.HTML(
|
108 |
+
value=self.legend,
|
109 |
+
elem_classes="output_legend",
|
110 |
+
)
|
111 |
+
|
112 |
+
# 按钮点击逻辑:触发图像转换
|
113 |
+
run_button.click(
|
114 |
+
self.inference,
|
115 |
+
inputs=in_image,
|
116 |
+
outputs=out_image,
|
117 |
+
)
|
118 |
+
|
119 |
+
@torch.no_grad()
|
120 |
+
def inference(self, image: Image.Image) -> Image.Image:
|
121 |
+
return self.cloud_adapter_forward(image)
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def cloud_adapter_forward(self, image: Image.Image) -> Image.Image:
|
125 |
+
"""
|
126 |
+
Cloud Adapter Inference
|
127 |
+
"""
|
128 |
+
ori_size = image.size
|
129 |
+
image = image.resize((self.img_size, self.img_size),
|
130 |
+
resample=Image.Resampling.BILINEAR)
|
131 |
+
image = np.array(image)
|
132 |
+
# print(image.shape)
|
133 |
+
image = (image - np.min(image)) / (np.max(image)-np.min(image))
|
134 |
+
|
135 |
+
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
136 |
+
image = image.permute(0, 3, 1, 2).float()
|
137 |
+
|
138 |
+
outs = self.model.predict(image)
|
139 |
+
pred_mask = outs[0].pred_sem_seg.data.cpu().numpy().astype(np.uint8)
|
140 |
+
|
141 |
+
im = Image.fromarray(pred_mask[0]).convert("P")
|
142 |
+
im.putpalette(self.palette)
|
143 |
+
|
144 |
+
del image
|
145 |
+
del outs
|
146 |
+
if torch.cuda.is_available():
|
147 |
+
torch.cuda.empty_cache()
|
148 |
+
return im.resize(ori_size, resample=Image.Resampling.BILINEAR)
|
149 |
+
|
150 |
+
|
151 |
+
def get_palette(dataset_name: str) -> List[int]:
|
152 |
+
if dataset_name in ["cloudsen12_high_l1c", "cloudsen12_high_l2a"]:
|
153 |
+
return [79, 253, 199, 77, 2, 115, 251, 255, 41, 221, 53, 223]
|
154 |
+
if dataset_name == "l8_biome":
|
155 |
+
return [79, 253, 199, 221, 53, 223, 251, 255, 41, 77, 2, 115]
|
156 |
+
if dataset_name in ["gf12ms_whu_gf1", "gf12ms_whu_gf2", "hrc_whu"]:
|
157 |
+
return [79, 253, 199, 77, 2, 115]
|
158 |
+
raise Exception("dataset_name not supported")
|
159 |
+
|
160 |
+
|
161 |
+
if __name__ == '__main__':
|
162 |
+
title = 'Cloud Segmentation for Remote Sensing Images'
|
163 |
+
custom_css = """
|
164 |
+
h1 {
|
165 |
+
text-align: center;
|
166 |
+
font-size: 24px;
|
167 |
+
font-weight: bold;
|
168 |
+
margin-bottom: 20px;
|
169 |
+
}
|
170 |
+
"""
|
171 |
+
hrc_whu_examples = glob("example_inputs/hrc_whu/*")
|
172 |
+
gf1_examples = glob("example_inputs/gf1/*")
|
173 |
+
gf2_examples = glob("example_inputs/gf2/*")
|
174 |
+
l1c_examples = glob("example_inputs/l1c/*")
|
175 |
+
l2a_examples = glob("example_inputs/l2a/*")
|
176 |
+
l8_examples = glob("example_inputs/l8/*")
|
177 |
+
|
178 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
179 |
+
with gr.Blocks(analytics_enabled=False, title=title,css=custom_css) as demo:
|
180 |
+
gr.Markdown(f'# {title}')
|
181 |
+
with gr.Tabs():
|
182 |
+
with gr.TabItem('Google Earth'):
|
183 |
+
CloudAdapterGradio(
|
184 |
+
config_path="cloud-adapter-configs/binary_classes_256x256.py",
|
185 |
+
checkpoint_path="checkpoints/cloud-adapter/hrc_whu_full_weight.pth",
|
186 |
+
device=device,
|
187 |
+
example_inputs=hrc_whu_examples,
|
188 |
+
num_classes=2,
|
189 |
+
palette=get_palette("hrc_whu"),
|
190 |
+
)
|
191 |
+
with gr.TabItem('Gaofen-1'):
|
192 |
+
CloudAdapterGradio(
|
193 |
+
config_path="cloud-adapter-configs/binary_classes_256x256.py",
|
194 |
+
checkpoint_path="checkpoints/cloud-adapter/gf1_full_weight.pth",
|
195 |
+
device=device,
|
196 |
+
example_inputs=gf1_examples,
|
197 |
+
num_classes=2,
|
198 |
+
palette=get_palette("gf12ms_whu_gf1"),
|
199 |
+
)
|
200 |
+
with gr.TabItem('Gaofen-2'):
|
201 |
+
CloudAdapterGradio(
|
202 |
+
config_path="cloud-adapter-configs/binary_classes_256x256.py",
|
203 |
+
checkpoint_path="checkpoints/cloud-adapter/gf2_full_weight.pth",
|
204 |
+
device=device,
|
205 |
+
example_inputs=gf2_examples,
|
206 |
+
num_classes=2,
|
207 |
+
palette=get_palette("gf12ms_whu_gf2"),
|
208 |
+
)
|
209 |
+
|
210 |
+
with gr.TabItem('Sentinel-2 (L1C)'):
|
211 |
+
CloudAdapterGradio(
|
212 |
+
config_path="cloud-adapter-configs/multi_classes_512x512.py",
|
213 |
+
checkpoint_path="checkpoints/cloud-adapter/l1c_full_weight.pth",
|
214 |
+
device=device,
|
215 |
+
example_inputs=l1c_examples,
|
216 |
+
num_classes=4,
|
217 |
+
palette=get_palette("cloudsen12_high_l1c"),
|
218 |
+
)
|
219 |
+
with gr.TabItem('Sentinel-2 (L2A)'):
|
220 |
+
CloudAdapterGradio(
|
221 |
+
config_path="cloud-adapter-configs/multi_classes_512x512.py",
|
222 |
+
checkpoint_path="checkpoints/cloud-adapter/l2a_full_weight.pth",
|
223 |
+
device=device,
|
224 |
+
example_inputs=l2a_examples,
|
225 |
+
num_classes=4,
|
226 |
+
palette=get_palette("cloudsen12_high_l2a"),
|
227 |
+
)
|
228 |
+
with gr.TabItem('Landsat-8'):
|
229 |
+
CloudAdapterGradio(
|
230 |
+
config_path="cloud-adapter-configs/multi_classes_512x512.py",
|
231 |
+
checkpoint_path="checkpoints/cloud-adapter/l8_full_weight.pth",
|
232 |
+
device=device,
|
233 |
+
example_inputs=l8_examples,
|
234 |
+
num_classes=4,
|
235 |
+
palette=get_palette("l8_biome"),
|
236 |
+
)
|
237 |
+
|
238 |
+
demo.launch(share=True, debug=True)
|
checkpoints/cloud-adapter/gf1_full_weight.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89e224c3b518fc8f59874f85a8c01a470cdbe4d602e22caf7f1ad1ededa2899e
|
3 |
+
size 1326991459
|
checkpoints/cloud-adapter/gf2_full_weight.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fd14e29f523e988743bc50e915816c80a69a526b032dab07e85433ace409d2f
|
3 |
+
size 1311500515
|
checkpoints/cloud-adapter/hrc_whu_full_weight.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:755b48d21763339284f4a9b6051c8dfb83a98babca75b39d6304b6f3e82f6c85
|
3 |
+
size 1316424759
|
checkpoints/cloud-adapter/l1c_full_weight.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7d4bb1dd99e1995450894b985a8fb29b6b931419e3ea08674e1420a5a044804
|
3 |
+
size 1332592483
|
checkpoints/cloud-adapter/l2a_full_weight.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d88e426ff6222b6807315060db1ee1b65a2f98de85a62bf7d3814ba846427bd0
|
3 |
+
size 1327383395
|
checkpoints/cloud-adapter/l8_full_weight.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:268ff0297fa37cde78ec16884f33a126d4e7c37b6e37c69d6b18a0ba258a0cee
|
3 |
+
size 1461519710
|
cloud-adapter-configs/binary_classes_256x256.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
crop_size = (
|
2 |
+
256,
|
3 |
+
256,
|
4 |
+
)
|
5 |
+
model = dict(
|
6 |
+
backbone=dict(
|
7 |
+
adapter_index=[
|
8 |
+
0,
|
9 |
+
1,
|
10 |
+
2,
|
11 |
+
3,
|
12 |
+
4,
|
13 |
+
5,
|
14 |
+
6,
|
15 |
+
7,
|
16 |
+
8,
|
17 |
+
9,
|
18 |
+
10,
|
19 |
+
11,
|
20 |
+
12,
|
21 |
+
13,
|
22 |
+
14,
|
23 |
+
15,
|
24 |
+
16,
|
25 |
+
17,
|
26 |
+
18,
|
27 |
+
19,
|
28 |
+
20,
|
29 |
+
21,
|
30 |
+
22,
|
31 |
+
23,
|
32 |
+
],
|
33 |
+
block_chunks=0,
|
34 |
+
depth=24,
|
35 |
+
embed_dim=1024,
|
36 |
+
ffn_bias=True,
|
37 |
+
ffn_layer='mlp',
|
38 |
+
has_cat=False,
|
39 |
+
img_size=512,
|
40 |
+
init_values=1e-05,
|
41 |
+
mlp_ratio=4,
|
42 |
+
num_heads=16,
|
43 |
+
cloud_adapter_config=dict(
|
44 |
+
cnn_type='pmaa',
|
45 |
+
context_dim=64,
|
46 |
+
depth=4,
|
47 |
+
emd_dim=1024,
|
48 |
+
global_groups=1,
|
49 |
+
hidden_channels=64,
|
50 |
+
int_type='convnext',
|
51 |
+
local_groups=1,
|
52 |
+
num_layers=24,
|
53 |
+
rank_dim=16,
|
54 |
+
return_last_feature=False,
|
55 |
+
return_multi_feats=False,
|
56 |
+
type='CloudAdapter'),
|
57 |
+
patch_size=16,
|
58 |
+
proj_bias=True,
|
59 |
+
qkv_bias=True,
|
60 |
+
type='CloudAdapterDinoVisionTransformer'),
|
61 |
+
data_preprocessor=dict(
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
mean=[
|
64 |
+
123.675,
|
65 |
+
116.28,
|
66 |
+
103.53,
|
67 |
+
],
|
68 |
+
pad_val=0,
|
69 |
+
seg_pad_val=255,
|
70 |
+
size=(
|
71 |
+
512,
|
72 |
+
512,
|
73 |
+
),
|
74 |
+
std=[
|
75 |
+
58.395,
|
76 |
+
57.12,
|
77 |
+
57.375,
|
78 |
+
],
|
79 |
+
type='SegDataPreProcessor'),
|
80 |
+
decode_head=dict(
|
81 |
+
align_corners=False,
|
82 |
+
enforce_decoder_input_project=False,
|
83 |
+
feat_channels=256,
|
84 |
+
in_channels=[
|
85 |
+
1024,
|
86 |
+
1024,
|
87 |
+
1024,
|
88 |
+
1024,
|
89 |
+
],
|
90 |
+
loss_cls=dict(
|
91 |
+
class_weight=[
|
92 |
+
1.0,
|
93 |
+
1.0,
|
94 |
+
1.0,
|
95 |
+
1.0,
|
96 |
+
0.1,
|
97 |
+
],
|
98 |
+
loss_weight=2.0,
|
99 |
+
reduction='mean',
|
100 |
+
type='mmdet.CrossEntropyLoss',
|
101 |
+
use_sigmoid=False),
|
102 |
+
loss_dice=dict(
|
103 |
+
activate=True,
|
104 |
+
eps=1.0,
|
105 |
+
loss_weight=5.0,
|
106 |
+
naive_dice=True,
|
107 |
+
reduction='mean',
|
108 |
+
type='mmdet.DiceLoss',
|
109 |
+
use_sigmoid=True),
|
110 |
+
loss_mask=dict(
|
111 |
+
loss_weight=5.0,
|
112 |
+
reduction='mean',
|
113 |
+
type='mmdet.CrossEntropyLoss',
|
114 |
+
use_sigmoid=True),
|
115 |
+
num_classes=2,
|
116 |
+
num_queries=100,
|
117 |
+
num_transformer_feat_level=3,
|
118 |
+
out_channels=256,
|
119 |
+
pixel_decoder=dict(
|
120 |
+
act_cfg=dict(type='ReLU'),
|
121 |
+
encoder=dict(
|
122 |
+
init_cfg=None,
|
123 |
+
layer_cfg=dict(
|
124 |
+
ffn_cfg=dict(
|
125 |
+
act_cfg=dict(inplace=True, type='ReLU'),
|
126 |
+
embed_dims=256,
|
127 |
+
feedforward_channels=1024,
|
128 |
+
ffn_drop=0.0,
|
129 |
+
num_fcs=2),
|
130 |
+
self_attn_cfg=dict(
|
131 |
+
batch_first=True,
|
132 |
+
dropout=0.0,
|
133 |
+
embed_dims=256,
|
134 |
+
im2col_step=64,
|
135 |
+
init_cfg=None,
|
136 |
+
norm_cfg=None,
|
137 |
+
num_heads=8,
|
138 |
+
num_levels=3,
|
139 |
+
num_points=4)),
|
140 |
+
num_layers=6),
|
141 |
+
init_cfg=None,
|
142 |
+
norm_cfg=dict(num_groups=32, type='GN'),
|
143 |
+
num_outs=3,
|
144 |
+
positional_encoding=dict(normalize=True, num_feats=128),
|
145 |
+
type='mmdet.MSDeformAttnPixelDecoder'),
|
146 |
+
positional_encoding=dict(normalize=True, num_feats=128),
|
147 |
+
strides=[
|
148 |
+
4,
|
149 |
+
8,
|
150 |
+
16,
|
151 |
+
32,
|
152 |
+
],
|
153 |
+
train_cfg=dict(
|
154 |
+
assigner=dict(
|
155 |
+
match_costs=[
|
156 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
157 |
+
dict(
|
158 |
+
type='mmdet.CrossEntropyLossCost',
|
159 |
+
use_sigmoid=True,
|
160 |
+
weight=5.0),
|
161 |
+
dict(
|
162 |
+
eps=1.0,
|
163 |
+
pred_act=True,
|
164 |
+
type='mmdet.DiceCost',
|
165 |
+
weight=5.0),
|
166 |
+
],
|
167 |
+
type='mmdet.HungarianAssigner'),
|
168 |
+
importance_sample_ratio=0.75,
|
169 |
+
num_points=12544,
|
170 |
+
oversample_ratio=3.0,
|
171 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
172 |
+
transformer_decoder=dict(
|
173 |
+
init_cfg=None,
|
174 |
+
layer_cfg=dict(
|
175 |
+
cross_attn_cfg=dict(
|
176 |
+
attn_drop=0.0,
|
177 |
+
batch_first=True,
|
178 |
+
dropout_layer=None,
|
179 |
+
embed_dims=256,
|
180 |
+
num_heads=8,
|
181 |
+
proj_drop=0.0),
|
182 |
+
ffn_cfg=dict(
|
183 |
+
act_cfg=dict(inplace=True, type='ReLU'),
|
184 |
+
add_identity=True,
|
185 |
+
dropout_layer=None,
|
186 |
+
embed_dims=256,
|
187 |
+
feedforward_channels=2048,
|
188 |
+
ffn_drop=0.0,
|
189 |
+
num_fcs=2),
|
190 |
+
self_attn_cfg=dict(
|
191 |
+
attn_drop=0.0,
|
192 |
+
batch_first=True,
|
193 |
+
dropout_layer=None,
|
194 |
+
embed_dims=256,
|
195 |
+
num_heads=8,
|
196 |
+
proj_drop=0.0)),
|
197 |
+
num_layers=9,
|
198 |
+
return_intermediate=True),
|
199 |
+
type='Mask2FormerHead'),
|
200 |
+
test_cfg=dict(mode='whole'),
|
201 |
+
train_cfg=dict(),
|
202 |
+
type='EncoderDecoder')
|
203 |
+
|
204 |
+
|
205 |
+
|
cloud-adapter-configs/multi_classes_512x512.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
crop_size = (
|
2 |
+
512,
|
3 |
+
512,
|
4 |
+
)
|
5 |
+
model = dict(
|
6 |
+
backbone=dict(
|
7 |
+
adapter_index=[
|
8 |
+
0,
|
9 |
+
1,
|
10 |
+
2,
|
11 |
+
3,
|
12 |
+
4,
|
13 |
+
5,
|
14 |
+
6,
|
15 |
+
7,
|
16 |
+
8,
|
17 |
+
9,
|
18 |
+
10,
|
19 |
+
11,
|
20 |
+
12,
|
21 |
+
13,
|
22 |
+
14,
|
23 |
+
15,
|
24 |
+
16,
|
25 |
+
17,
|
26 |
+
18,
|
27 |
+
19,
|
28 |
+
20,
|
29 |
+
21,
|
30 |
+
22,
|
31 |
+
23,
|
32 |
+
],
|
33 |
+
block_chunks=0,
|
34 |
+
depth=24,
|
35 |
+
embed_dim=1024,
|
36 |
+
ffn_bias=True,
|
37 |
+
ffn_layer='mlp',
|
38 |
+
has_cat=False,
|
39 |
+
img_size=512,
|
40 |
+
init_values=1e-05,
|
41 |
+
mlp_ratio=4,
|
42 |
+
num_heads=16,
|
43 |
+
cloud_adapter_config=dict(
|
44 |
+
cnn_type='pmaa',
|
45 |
+
context_dim=64,
|
46 |
+
depth=4,
|
47 |
+
emd_dim=1024,
|
48 |
+
global_groups=1,
|
49 |
+
hidden_channels=64,
|
50 |
+
int_type='convnext',
|
51 |
+
local_groups=1,
|
52 |
+
num_layers=24,
|
53 |
+
rank_dim=16,
|
54 |
+
return_last_feature=False,
|
55 |
+
return_multi_feats=False,
|
56 |
+
type='CloudAdapter'),
|
57 |
+
patch_size=16,
|
58 |
+
proj_bias=True,
|
59 |
+
qkv_bias=True,
|
60 |
+
type='CloudAdapterDinoVisionTransformer'),
|
61 |
+
data_preprocessor=dict(
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
mean=[
|
64 |
+
123.675,
|
65 |
+
116.28,
|
66 |
+
103.53,
|
67 |
+
],
|
68 |
+
pad_val=0,
|
69 |
+
seg_pad_val=255,
|
70 |
+
size=(
|
71 |
+
512,
|
72 |
+
512,
|
73 |
+
),
|
74 |
+
std=[
|
75 |
+
58.395,
|
76 |
+
57.12,
|
77 |
+
57.375,
|
78 |
+
],
|
79 |
+
type='SegDataPreProcessor'),
|
80 |
+
decode_head=dict(
|
81 |
+
align_corners=False,
|
82 |
+
enforce_decoder_input_project=False,
|
83 |
+
feat_channels=256,
|
84 |
+
in_channels=[
|
85 |
+
1024,
|
86 |
+
1024,
|
87 |
+
1024,
|
88 |
+
1024,
|
89 |
+
],
|
90 |
+
loss_cls=dict(
|
91 |
+
class_weight=[
|
92 |
+
1.0,
|
93 |
+
1.0,
|
94 |
+
1.0,
|
95 |
+
1.0,
|
96 |
+
0.1,
|
97 |
+
],
|
98 |
+
loss_weight=2.0,
|
99 |
+
reduction='mean',
|
100 |
+
type='mmdet.CrossEntropyLoss',
|
101 |
+
use_sigmoid=False),
|
102 |
+
loss_dice=dict(
|
103 |
+
activate=True,
|
104 |
+
eps=1.0,
|
105 |
+
loss_weight=5.0,
|
106 |
+
naive_dice=True,
|
107 |
+
reduction='mean',
|
108 |
+
type='mmdet.DiceLoss',
|
109 |
+
use_sigmoid=True),
|
110 |
+
loss_mask=dict(
|
111 |
+
loss_weight=5.0,
|
112 |
+
reduction='mean',
|
113 |
+
type='mmdet.CrossEntropyLoss',
|
114 |
+
use_sigmoid=True),
|
115 |
+
num_classes=4,
|
116 |
+
num_queries=100,
|
117 |
+
num_transformer_feat_level=3,
|
118 |
+
out_channels=256,
|
119 |
+
pixel_decoder=dict(
|
120 |
+
act_cfg=dict(type='ReLU'),
|
121 |
+
encoder=dict(
|
122 |
+
init_cfg=None,
|
123 |
+
layer_cfg=dict(
|
124 |
+
ffn_cfg=dict(
|
125 |
+
act_cfg=dict(inplace=True, type='ReLU'),
|
126 |
+
embed_dims=256,
|
127 |
+
feedforward_channels=1024,
|
128 |
+
ffn_drop=0.0,
|
129 |
+
num_fcs=2),
|
130 |
+
self_attn_cfg=dict(
|
131 |
+
batch_first=True,
|
132 |
+
dropout=0.0,
|
133 |
+
embed_dims=256,
|
134 |
+
im2col_step=64,
|
135 |
+
init_cfg=None,
|
136 |
+
norm_cfg=None,
|
137 |
+
num_heads=8,
|
138 |
+
num_levels=3,
|
139 |
+
num_points=4)),
|
140 |
+
num_layers=6),
|
141 |
+
init_cfg=None,
|
142 |
+
norm_cfg=dict(num_groups=32, type='GN'),
|
143 |
+
num_outs=3,
|
144 |
+
positional_encoding=dict(normalize=True, num_feats=128),
|
145 |
+
type='mmdet.MSDeformAttnPixelDecoder'),
|
146 |
+
positional_encoding=dict(normalize=True, num_feats=128),
|
147 |
+
strides=[
|
148 |
+
4,
|
149 |
+
8,
|
150 |
+
16,
|
151 |
+
32,
|
152 |
+
],
|
153 |
+
train_cfg=dict(
|
154 |
+
assigner=dict(
|
155 |
+
match_costs=[
|
156 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
157 |
+
dict(
|
158 |
+
type='mmdet.CrossEntropyLossCost',
|
159 |
+
use_sigmoid=True,
|
160 |
+
weight=5.0),
|
161 |
+
dict(
|
162 |
+
eps=1.0,
|
163 |
+
pred_act=True,
|
164 |
+
type='mmdet.DiceCost',
|
165 |
+
weight=5.0),
|
166 |
+
],
|
167 |
+
type='mmdet.HungarianAssigner'),
|
168 |
+
importance_sample_ratio=0.75,
|
169 |
+
num_points=12544,
|
170 |
+
oversample_ratio=3.0,
|
171 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
172 |
+
transformer_decoder=dict(
|
173 |
+
init_cfg=None,
|
174 |
+
layer_cfg=dict(
|
175 |
+
cross_attn_cfg=dict(
|
176 |
+
attn_drop=0.0,
|
177 |
+
batch_first=True,
|
178 |
+
dropout_layer=None,
|
179 |
+
embed_dims=256,
|
180 |
+
num_heads=8,
|
181 |
+
proj_drop=0.0),
|
182 |
+
ffn_cfg=dict(
|
183 |
+
act_cfg=dict(inplace=True, type='ReLU'),
|
184 |
+
add_identity=True,
|
185 |
+
dropout_layer=None,
|
186 |
+
embed_dims=256,
|
187 |
+
feedforward_channels=2048,
|
188 |
+
ffn_drop=0.0,
|
189 |
+
num_fcs=2),
|
190 |
+
self_attn_cfg=dict(
|
191 |
+
attn_drop=0.0,
|
192 |
+
batch_first=True,
|
193 |
+
dropout_layer=None,
|
194 |
+
embed_dims=256,
|
195 |
+
num_heads=8,
|
196 |
+
proj_drop=0.0)),
|
197 |
+
num_layers=9,
|
198 |
+
return_intermediate=True),
|
199 |
+
type='Mask2FormerHead'),
|
200 |
+
test_cfg=dict(mode='whole'),
|
201 |
+
train_cfg=dict(),
|
202 |
+
type='EncoderDecoder')
|
203 |
+
|
204 |
+
|
205 |
+
|
cloud_adapter/__init__.py
ADDED
File without changes
|
cloud_adapter/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (161 Bytes). View file
|
|
cloud_adapter/__pycache__/cloud_adapter.cpython-38.pyc
ADDED
Binary file (18.3 kB). View file
|
|
cloud_adapter/__pycache__/cloud_adapter_dinov2.cpython-38.pyc
ADDED
Binary file (4.08 kB). View file
|
|
cloud_adapter/__pycache__/dino_v2.cpython-38.pyc
ADDED
Binary file (10.2 kB). View file
|
|
cloud_adapter/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (1.94 kB). View file
|
|
cloud_adapter/cdnetv1.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2024/7/24 上午11:36
|
3 |
+
# @Author : xiaoshun
|
4 |
+
# @Email : 3038523973@qq.com
|
5 |
+
# @File : cdnetv1.py
|
6 |
+
# @Software: PyCharm
|
7 |
+
|
8 |
+
"""Cloud detection Network"""
|
9 |
+
|
10 |
+
"""Cloud detection Network"""
|
11 |
+
|
12 |
+
"""
|
13 |
+
This is the implementation of CDnetV1 without multi-scale inputs. This implementation uses ResNet by default.
|
14 |
+
"""
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
import torch.nn.functional as F
|
19 |
+
|
20 |
+
affine_par = True
|
21 |
+
|
22 |
+
|
23 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
24 |
+
"3x3 convolution with padding"
|
25 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
26 |
+
padding=1, bias=False)
|
27 |
+
|
28 |
+
|
29 |
+
class BasicBlock(nn.Module):
|
30 |
+
expansion = 1
|
31 |
+
|
32 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
33 |
+
super(BasicBlock, self).__init__()
|
34 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
35 |
+
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
|
36 |
+
self.relu = nn.ReLU(inplace=True)
|
37 |
+
self.conv2 = conv3x3(planes, planes)
|
38 |
+
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
|
39 |
+
self.downsample = downsample
|
40 |
+
self.stride = stride
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
residual = x
|
44 |
+
|
45 |
+
out = self.conv1(x)
|
46 |
+
out = self.bn1(out)
|
47 |
+
out = self.relu(out)
|
48 |
+
|
49 |
+
out = self.conv2(out)
|
50 |
+
out = self.bn2(out)
|
51 |
+
|
52 |
+
if self.downsample is not None:
|
53 |
+
residual = self.downsample(x)
|
54 |
+
|
55 |
+
out += residual
|
56 |
+
out = self.relu(out)
|
57 |
+
|
58 |
+
return out
|
59 |
+
|
60 |
+
|
61 |
+
class Bottleneck(nn.Module):
|
62 |
+
expansion = 4
|
63 |
+
|
64 |
+
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
|
65 |
+
super(Bottleneck, self).__init__()
|
66 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
|
67 |
+
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
|
68 |
+
for i in self.bn1.parameters():
|
69 |
+
i.requires_grad = False
|
70 |
+
|
71 |
+
padding = dilation
|
72 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
|
73 |
+
padding=padding, bias=False, dilation=dilation)
|
74 |
+
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
|
75 |
+
for i in self.bn2.parameters():
|
76 |
+
i.requires_grad = False
|
77 |
+
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
78 |
+
self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par)
|
79 |
+
for i in self.bn3.parameters():
|
80 |
+
i.requires_grad = False
|
81 |
+
self.relu = nn.ReLU(inplace=True)
|
82 |
+
self.downsample = downsample
|
83 |
+
self.stride = stride
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
residual = x
|
87 |
+
|
88 |
+
out = self.conv1(x)
|
89 |
+
out = self.bn1(out)
|
90 |
+
out = self.relu(out)
|
91 |
+
|
92 |
+
out = self.conv2(out)
|
93 |
+
out = self.bn2(out)
|
94 |
+
out = self.relu(out)
|
95 |
+
|
96 |
+
out = self.conv3(out)
|
97 |
+
out = self.bn3(out)
|
98 |
+
|
99 |
+
if self.downsample is not None:
|
100 |
+
residual = self.downsample(x)
|
101 |
+
|
102 |
+
out += residual
|
103 |
+
out = self.relu(out)
|
104 |
+
|
105 |
+
return out
|
106 |
+
|
107 |
+
|
108 |
+
class Classifier_Module(nn.Module):
|
109 |
+
|
110 |
+
def __init__(self, dilation_series, padding_series, num_classes):
|
111 |
+
super(Classifier_Module, self).__init__()
|
112 |
+
self.conv2d_list = nn.ModuleList()
|
113 |
+
for dilation, padding in zip(dilation_series, padding_series):
|
114 |
+
self.conv2d_list.append(
|
115 |
+
nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True))
|
116 |
+
|
117 |
+
for m in self.conv2d_list:
|
118 |
+
m.weight.data.normal_(0, 0.01)
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
out = self.conv2d_list[0](x)
|
122 |
+
for i in range(len(self.conv2d_list) - 1):
|
123 |
+
out += self.conv2d_list[i + 1](x)
|
124 |
+
return out
|
125 |
+
|
126 |
+
|
127 |
+
class _ConvBNReLU(nn.Module):
|
128 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
|
129 |
+
dilation=1, groups=1, norm_layer=nn.BatchNorm2d):
|
130 |
+
super(_ConvBNReLU, self).__init__()
|
131 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
|
132 |
+
self.bn = norm_layer(out_channels)
|
133 |
+
self.relu = nn.ReLU(True)
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
x = self.conv(x)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = self.relu(x)
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
class _ASPPConv(nn.Module):
|
143 |
+
def __init__(self, in_channels, out_channels, atrous_rate, norm_layer):
|
144 |
+
super(_ASPPConv, self).__init__()
|
145 |
+
self.block = nn.Sequential(
|
146 |
+
nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False),
|
147 |
+
norm_layer(out_channels),
|
148 |
+
nn.ReLU(True)
|
149 |
+
)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
return self.block(x)
|
153 |
+
|
154 |
+
|
155 |
+
class _AsppPooling(nn.Module):
|
156 |
+
def __init__(self, in_channels, out_channels, norm_layer):
|
157 |
+
super(_AsppPooling, self).__init__()
|
158 |
+
self.gap = nn.Sequential(
|
159 |
+
nn.AdaptiveAvgPool2d(1),
|
160 |
+
nn.Conv2d(in_channels, out_channels, 1, bias=False),
|
161 |
+
norm_layer(out_channels),
|
162 |
+
nn.ReLU(True)
|
163 |
+
)
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
size = x.size()[2:]
|
167 |
+
pool = self.gap(x)
|
168 |
+
out = F.interpolate(pool, size, mode='bilinear', align_corners=True)
|
169 |
+
return out
|
170 |
+
|
171 |
+
|
172 |
+
class _ASPP(nn.Module):
|
173 |
+
def __init__(self, in_channels, atrous_rates, norm_layer):
|
174 |
+
super(_ASPP, self).__init__()
|
175 |
+
out_channels = 512 # changed from 256
|
176 |
+
self.b0 = nn.Sequential(
|
177 |
+
nn.Conv2d(in_channels, out_channels, 1, bias=False),
|
178 |
+
norm_layer(out_channels),
|
179 |
+
nn.ReLU(True)
|
180 |
+
)
|
181 |
+
|
182 |
+
rate1, rate2, rate3 = tuple(atrous_rates)
|
183 |
+
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
|
184 |
+
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
|
185 |
+
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
|
186 |
+
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
|
187 |
+
|
188 |
+
# self.project = nn.Sequential(
|
189 |
+
# nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
|
190 |
+
# norm_layer(out_channels),
|
191 |
+
# nn.ReLU(True),
|
192 |
+
# nn.Dropout(0.5))
|
193 |
+
self.dropout2d = nn.Dropout2d(0.3)
|
194 |
+
|
195 |
+
def forward(self, x):
|
196 |
+
feat1 = self.dropout2d(self.b0(x))
|
197 |
+
feat2 = self.dropout2d(self.b1(x))
|
198 |
+
feat3 = self.dropout2d(self.b2(x))
|
199 |
+
feat4 = self.dropout2d(self.b3(x))
|
200 |
+
feat5 = self.dropout2d(self.b4(x))
|
201 |
+
x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
202 |
+
# x = self.project(x)
|
203 |
+
return x
|
204 |
+
|
205 |
+
|
206 |
+
class _FPM(nn.Module):
|
207 |
+
def __init__(self, in_channels, num_classes, norm_layer=nn.BatchNorm2d):
|
208 |
+
super(_FPM, self).__init__()
|
209 |
+
self.aspp = _ASPP(in_channels, [6, 12, 18], norm_layer=norm_layer)
|
210 |
+
# self.dropout2d = nn.Dropout2d(0.5)
|
211 |
+
|
212 |
+
def forward(self, x):
|
213 |
+
x = torch.cat((x, self.aspp(x)), dim=1)
|
214 |
+
# x = self.dropout2d(x) # added
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
class BR(nn.Module):
|
219 |
+
def __init__(self, num_classes, stride=1, downsample=None):
|
220 |
+
super(BR, self).__init__()
|
221 |
+
self.conv1 = conv3x3(num_classes, num_classes * 16, stride)
|
222 |
+
self.relu = nn.ReLU(inplace=True)
|
223 |
+
self.conv2 = conv3x3(num_classes * 16, num_classes)
|
224 |
+
self.stride = stride
|
225 |
+
|
226 |
+
def forward(self, x):
|
227 |
+
residual = x
|
228 |
+
|
229 |
+
out = self.conv1(x)
|
230 |
+
out = self.relu(out)
|
231 |
+
|
232 |
+
out = self.conv2(out)
|
233 |
+
out += residual
|
234 |
+
|
235 |
+
return out
|
236 |
+
|
237 |
+
|
238 |
+
class CDnetV1(nn.Module):
|
239 |
+
def __init__(self, in_channels=3,block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True):
|
240 |
+
self.inplanes = 64
|
241 |
+
self.aux = aux
|
242 |
+
super().__init__()
|
243 |
+
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
244 |
+
# self.bn1 = nn.BatchNorm2d(64, affine = affine_par)
|
245 |
+
|
246 |
+
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False)
|
247 |
+
self.bn1 = nn.BatchNorm2d(64, affine=affine_par)
|
248 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
249 |
+
self.bn2 = nn.BatchNorm2d(64, affine=affine_par)
|
250 |
+
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
251 |
+
self.bn3 = nn.BatchNorm2d(64, affine=affine_par)
|
252 |
+
|
253 |
+
for i in self.bn1.parameters():
|
254 |
+
i.requires_grad = False
|
255 |
+
self.relu = nn.ReLU(inplace=True)
|
256 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change
|
257 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
258 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
259 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
|
260 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
|
261 |
+
# self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes)
|
262 |
+
|
263 |
+
self.res5_con1x1 = nn.Sequential(
|
264 |
+
nn.Conv2d(1024 + 2048, 512, kernel_size=1, stride=1, padding=0),
|
265 |
+
nn.BatchNorm2d(512),
|
266 |
+
nn.ReLU(True)
|
267 |
+
)
|
268 |
+
|
269 |
+
self.fpm1 = _FPM(512, num_classes)
|
270 |
+
self.fpm2 = _FPM(512, num_classes)
|
271 |
+
self.fpm3 = _FPM(256, num_classes)
|
272 |
+
|
273 |
+
self.br1 = BR(num_classes)
|
274 |
+
self.br2 = BR(num_classes)
|
275 |
+
self.br3 = BR(num_classes)
|
276 |
+
self.br4 = BR(num_classes)
|
277 |
+
self.br5 = BR(num_classes)
|
278 |
+
self.br6 = BR(num_classes)
|
279 |
+
self.br7 = BR(num_classes)
|
280 |
+
|
281 |
+
self.predict1 = self._predict_layer(512 * 6, num_classes)
|
282 |
+
self.predict2 = self._predict_layer(512 * 6, num_classes)
|
283 |
+
self.predict3 = self._predict_layer(512 * 5 + 256, num_classes)
|
284 |
+
|
285 |
+
for m in self.modules():
|
286 |
+
if isinstance(m, nn.Conv2d):
|
287 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
288 |
+
m.weight.data.normal_(0, 0.01)
|
289 |
+
elif isinstance(m, nn.BatchNorm2d):
|
290 |
+
m.weight.data.fill_(1)
|
291 |
+
m.bias.data.zero_()
|
292 |
+
# for i in m.parameters():
|
293 |
+
# i.requires_grad = False
|
294 |
+
|
295 |
+
def _predict_layer(self, in_channels, num_classes):
|
296 |
+
return nn.Sequential(nn.Conv2d(in_channels, 256, kernel_size=1, stride=1, padding=0),
|
297 |
+
nn.BatchNorm2d(256),
|
298 |
+
nn.ReLU(True),
|
299 |
+
nn.Dropout2d(0.1),
|
300 |
+
nn.Conv2d(256, num_classes, kernel_size=3, stride=1, padding=1, bias=True))
|
301 |
+
|
302 |
+
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
|
303 |
+
downsample = None
|
304 |
+
if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4:
|
305 |
+
downsample = nn.Sequential(
|
306 |
+
nn.Conv2d(self.inplanes, planes * block.expansion,
|
307 |
+
kernel_size=1, stride=stride, bias=False),
|
308 |
+
nn.BatchNorm2d(planes * block.expansion, affine=affine_par))
|
309 |
+
for i in downsample._modules['1'].parameters():
|
310 |
+
i.requires_grad = False
|
311 |
+
layers = []
|
312 |
+
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample))
|
313 |
+
self.inplanes = planes * block.expansion
|
314 |
+
for i in range(1, blocks):
|
315 |
+
layers.append(block(self.inplanes, planes, dilation=dilation))
|
316 |
+
|
317 |
+
return nn.Sequential(*layers)
|
318 |
+
|
319 |
+
# def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
|
320 |
+
# return block(dilation_series,padding_series,num_classes)
|
321 |
+
|
322 |
+
def base_forward(self, x):
|
323 |
+
x = self.relu(self.bn1(self.conv1(x)))
|
324 |
+
size_conv1 = x.size()[2:]
|
325 |
+
x = self.relu(self.bn2(self.conv2(x)))
|
326 |
+
x = self.relu(self.bn3(self.conv3(x)))
|
327 |
+
x = self.maxpool(x)
|
328 |
+
x = self.layer1(x)
|
329 |
+
res2 = x
|
330 |
+
x = self.layer2(x)
|
331 |
+
res3 = x
|
332 |
+
x = self.layer3(x)
|
333 |
+
res4 = x
|
334 |
+
x = self.layer4(x)
|
335 |
+
x = self.res5_con1x1(torch.cat([x, res4], dim=1))
|
336 |
+
|
337 |
+
return x, res3, res2, size_conv1
|
338 |
+
|
339 |
+
def forward(self, x):
|
340 |
+
size = x.size()[2:]
|
341 |
+
score1, score2, score3, size_conv1 = self.base_forward(x)
|
342 |
+
# outputs = list()
|
343 |
+
score1 = self.fpm1(score1)
|
344 |
+
score1 = self.predict1(score1) # 1/8
|
345 |
+
predict1 = score1
|
346 |
+
score1 = self.br1(score1)
|
347 |
+
|
348 |
+
score2 = self.fpm2(score2)
|
349 |
+
score2 = self.predict2(score2) # 1/8
|
350 |
+
predict2 = score2
|
351 |
+
|
352 |
+
# first fusion
|
353 |
+
score2 = self.br2(score2) + score1
|
354 |
+
score2 = self.br3(score2)
|
355 |
+
|
356 |
+
score3 = self.fpm3(score3)
|
357 |
+
score3 = self.predict3(score3) # 1/4
|
358 |
+
predict3 = score3
|
359 |
+
score3 = self.br4(score3)
|
360 |
+
|
361 |
+
# second fusion
|
362 |
+
size_score3 = score3.size()[2:]
|
363 |
+
score3 = score3 + F.interpolate(score2, size_score3, mode='bilinear', align_corners=True)
|
364 |
+
score3 = self.br5(score3)
|
365 |
+
|
366 |
+
# upsampling + BR
|
367 |
+
score3 = F.interpolate(score3, size_conv1, mode='bilinear', align_corners=True)
|
368 |
+
score3 = self.br6(score3)
|
369 |
+
score3 = F.interpolate(score3, size, mode='bilinear', align_corners=True)
|
370 |
+
score3 = self.br7(score3)
|
371 |
+
|
372 |
+
# if self.aux:
|
373 |
+
# auxout = self.dsn(mid)
|
374 |
+
# auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True)
|
375 |
+
# #outputs.append(auxout)
|
376 |
+
return score3
|
377 |
+
# return score3, predict1, predict2, predict3
|
378 |
+
|
379 |
+
|
380 |
+
if __name__ == '__main__':
|
381 |
+
model = CDnetV1(num_classes=21)
|
382 |
+
fake_image = torch.randn(2, 3, 224, 224)
|
383 |
+
outputs = model(fake_image)
|
384 |
+
for out in outputs:
|
385 |
+
print(out.shape)
|
386 |
+
# torch.Size([2, 21, 224, 224])
|
387 |
+
# torch.Size([2, 21, 29, 29])
|
388 |
+
# torch.Size([2, 21, 29, 29])
|
389 |
+
# torch.Size([2, 21, 57, 57])
|
cloud_adapter/cdnetv2.py
ADDED
@@ -0,0 +1,693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2024/7/24 下午3:41
|
3 |
+
# @Author : xiaoshun
|
4 |
+
# @Email : 3038523973@qq.com
|
5 |
+
# @File : cdnetv2.py
|
6 |
+
# @Software: PyCharm
|
7 |
+
|
8 |
+
"""Cloud detection Network"""
|
9 |
+
|
10 |
+
"""
|
11 |
+
This is the implementation of CDnetV2 without multi-scale inputs. This implementation uses ResNet by default.
|
12 |
+
"""
|
13 |
+
# nn.GroupNorm
|
14 |
+
|
15 |
+
import torch
|
16 |
+
# import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
affine_par = True
|
21 |
+
|
22 |
+
|
23 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
24 |
+
"3x3 convolution with padding"
|
25 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
26 |
+
padding=1, bias=False)
|
27 |
+
|
28 |
+
|
29 |
+
class BasicBlock(nn.Module):
|
30 |
+
expansion = 1
|
31 |
+
|
32 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
33 |
+
super(BasicBlock, self).__init__()
|
34 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
35 |
+
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
|
36 |
+
self.relu = nn.ReLU(inplace=True)
|
37 |
+
self.conv2 = conv3x3(planes, planes)
|
38 |
+
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
|
39 |
+
self.downsample = downsample
|
40 |
+
self.stride = stride
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
residual = x
|
44 |
+
|
45 |
+
out = self.conv1(x)
|
46 |
+
out = self.bn1(out)
|
47 |
+
out = self.relu(out)
|
48 |
+
|
49 |
+
out = self.conv2(out)
|
50 |
+
out = self.bn2(out)
|
51 |
+
|
52 |
+
if self.downsample is not None:
|
53 |
+
residual = self.downsample(x)
|
54 |
+
|
55 |
+
out += residual
|
56 |
+
out = self.relu(out)
|
57 |
+
|
58 |
+
return out
|
59 |
+
|
60 |
+
|
61 |
+
class Bottleneck(nn.Module):
|
62 |
+
expansion = 4
|
63 |
+
|
64 |
+
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
|
65 |
+
super(Bottleneck, self).__init__()
|
66 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
|
67 |
+
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
|
68 |
+
for i in self.bn1.parameters():
|
69 |
+
i.requires_grad = False
|
70 |
+
|
71 |
+
padding = dilation
|
72 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
|
73 |
+
padding=padding, bias=False, dilation=dilation)
|
74 |
+
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
|
75 |
+
for i in self.bn2.parameters():
|
76 |
+
i.requires_grad = False
|
77 |
+
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
78 |
+
self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par)
|
79 |
+
for i in self.bn3.parameters():
|
80 |
+
i.requires_grad = False
|
81 |
+
self.relu = nn.ReLU(inplace=True)
|
82 |
+
self.downsample = downsample
|
83 |
+
self.stride = stride
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
residual = x
|
87 |
+
|
88 |
+
out = self.conv1(x)
|
89 |
+
out = self.bn1(out)
|
90 |
+
out = self.relu(out)
|
91 |
+
|
92 |
+
out = self.conv2(out)
|
93 |
+
out = self.bn2(out)
|
94 |
+
out = self.relu(out)
|
95 |
+
|
96 |
+
out = self.conv3(out)
|
97 |
+
out = self.bn3(out)
|
98 |
+
|
99 |
+
if self.downsample is not None:
|
100 |
+
residual = self.downsample(x)
|
101 |
+
|
102 |
+
out += residual
|
103 |
+
out = self.relu(out)
|
104 |
+
|
105 |
+
return out
|
106 |
+
|
107 |
+
# self.layerx_1 = Bottleneck_nosample(64, 64, stride=1, dilation=1)
|
108 |
+
# self.layerx_2 = Bottleneck(256, 64, stride=1, dilation=1, downsample=None)
|
109 |
+
# self.layerx_3 = Bottleneck_downsample(256, 64, stride=2, dilation=1)
|
110 |
+
|
111 |
+
|
112 |
+
class Res_block_1(nn.Module):
|
113 |
+
expansion = 4
|
114 |
+
|
115 |
+
def __init__(self, inplanes=64, planes=64, stride=1, dilation=1):
|
116 |
+
super(Res_block_1, self).__init__()
|
117 |
+
|
118 |
+
self.conv1 = nn.Sequential(
|
119 |
+
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False),
|
120 |
+
nn.GroupNorm(8, planes),
|
121 |
+
nn.ReLU(inplace=True))
|
122 |
+
|
123 |
+
self.conv2 = nn.Sequential(
|
124 |
+
nn.Conv2d(planes, planes, kernel_size=3, stride=1,
|
125 |
+
padding=1, bias=False, dilation=1),
|
126 |
+
nn.GroupNorm(8, planes),
|
127 |
+
nn.ReLU(inplace=True))
|
128 |
+
|
129 |
+
self.conv3 = nn.Sequential(
|
130 |
+
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False),
|
131 |
+
nn.GroupNorm(8, planes * 4))
|
132 |
+
|
133 |
+
self.relu = nn.ReLU(inplace=True)
|
134 |
+
|
135 |
+
self.down_sample = nn.Sequential(
|
136 |
+
nn.Conv2d(inplanes, planes * 4,
|
137 |
+
kernel_size=1, stride=1, bias=False),
|
138 |
+
nn.GroupNorm(8, planes * 4))
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
# residual = x
|
142 |
+
|
143 |
+
out = self.conv1(x)
|
144 |
+
out = self.conv2(out)
|
145 |
+
out = self.conv3(out)
|
146 |
+
residual = self.down_sample(x)
|
147 |
+
out += residual
|
148 |
+
out = self.relu(out)
|
149 |
+
|
150 |
+
return out
|
151 |
+
|
152 |
+
|
153 |
+
class Res_block_2(nn.Module):
|
154 |
+
expansion = 4
|
155 |
+
|
156 |
+
def __init__(self, inplanes=256, planes=64, stride=1, dilation=1):
|
157 |
+
super(Res_block_2, self).__init__()
|
158 |
+
|
159 |
+
self.conv1 = nn.Sequential(
|
160 |
+
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False),
|
161 |
+
nn.GroupNorm(8, planes),
|
162 |
+
nn.ReLU(inplace=True))
|
163 |
+
|
164 |
+
self.conv2 = nn.Sequential(
|
165 |
+
nn.Conv2d(planes, planes, kernel_size=3, stride=1,
|
166 |
+
padding=1, bias=False, dilation=1),
|
167 |
+
nn.GroupNorm(8, planes),
|
168 |
+
nn.ReLU(inplace=True))
|
169 |
+
|
170 |
+
self.conv3 = nn.Sequential(
|
171 |
+
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False),
|
172 |
+
nn.GroupNorm(8, planes * 4))
|
173 |
+
|
174 |
+
self.relu = nn.ReLU(inplace=True)
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
residual = x
|
178 |
+
|
179 |
+
out = self.conv1(x)
|
180 |
+
out = self.conv2(out)
|
181 |
+
out = self.conv3(out)
|
182 |
+
|
183 |
+
out += residual
|
184 |
+
out = self.relu(out)
|
185 |
+
|
186 |
+
return out
|
187 |
+
|
188 |
+
|
189 |
+
class Res_block_3(nn.Module):
|
190 |
+
expansion = 4
|
191 |
+
|
192 |
+
def __init__(self, inplanes=256, planes=64, stride=1, dilation=1):
|
193 |
+
super(Res_block_3, self).__init__()
|
194 |
+
|
195 |
+
self.conv1 = nn.Sequential(
|
196 |
+
nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False),
|
197 |
+
nn.GroupNorm(8, planes),
|
198 |
+
nn.ReLU(inplace=True))
|
199 |
+
|
200 |
+
self.conv2 = nn.Sequential(
|
201 |
+
nn.Conv2d(planes, planes, kernel_size=3, stride=1,
|
202 |
+
padding=1, bias=False, dilation=1),
|
203 |
+
nn.GroupNorm(8, planes),
|
204 |
+
nn.ReLU(inplace=True))
|
205 |
+
|
206 |
+
self.conv3 = nn.Sequential(
|
207 |
+
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False),
|
208 |
+
nn.GroupNorm(8, planes * 4))
|
209 |
+
|
210 |
+
self.relu = nn.ReLU(inplace=True)
|
211 |
+
|
212 |
+
self.downsample = nn.Sequential(
|
213 |
+
nn.Conv2d(inplanes, planes * 4,
|
214 |
+
kernel_size=1, stride=stride, bias=False),
|
215 |
+
nn.GroupNorm(8, planes * 4))
|
216 |
+
|
217 |
+
def forward(self, x):
|
218 |
+
# residual = x
|
219 |
+
|
220 |
+
out = self.conv1(x)
|
221 |
+
out = self.conv2(out)
|
222 |
+
out = self.conv3(out)
|
223 |
+
# residual = self.downsample(x)
|
224 |
+
out += self.downsample(x)
|
225 |
+
out = self.relu(out)
|
226 |
+
|
227 |
+
return out
|
228 |
+
|
229 |
+
|
230 |
+
class Classifier_Module(nn.Module):
|
231 |
+
|
232 |
+
def __init__(self, dilation_series, padding_series, num_classes):
|
233 |
+
super(Classifier_Module, self).__init__()
|
234 |
+
self.conv2d_list = nn.ModuleList()
|
235 |
+
for dilation, padding in zip(dilation_series, padding_series):
|
236 |
+
self.conv2d_list.append(
|
237 |
+
nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True))
|
238 |
+
|
239 |
+
for m in self.conv2d_list:
|
240 |
+
m.weight.data.normal_(0, 0.01)
|
241 |
+
|
242 |
+
def forward(self, x):
|
243 |
+
out = self.conv2d_list[0](x)
|
244 |
+
for i in range(len(self.conv2d_list) - 1):
|
245 |
+
out += self.conv2d_list[i + 1](x)
|
246 |
+
return out
|
247 |
+
|
248 |
+
|
249 |
+
class _ConvBNReLU(nn.Module):
|
250 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
|
251 |
+
dilation=1, groups=1, relu6=False, norm_layer=nn.BatchNorm2d):
|
252 |
+
super(_ConvBNReLU, self).__init__()
|
253 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
|
254 |
+
self.bn = norm_layer(out_channels)
|
255 |
+
self.relu = nn.ReLU6(True) if relu6 else nn.ReLU(True)
|
256 |
+
|
257 |
+
def forward(self, x):
|
258 |
+
x = self.conv(x)
|
259 |
+
x = self.bn(x)
|
260 |
+
x = self.relu(x)
|
261 |
+
return x
|
262 |
+
|
263 |
+
|
264 |
+
class _ASPPConv(nn.Module):
|
265 |
+
def __init__(self, in_channels, out_channels, atrous_rate, norm_layer):
|
266 |
+
super(_ASPPConv, self).__init__()
|
267 |
+
self.block = nn.Sequential(
|
268 |
+
nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False),
|
269 |
+
norm_layer(out_channels),
|
270 |
+
nn.ReLU(True)
|
271 |
+
)
|
272 |
+
|
273 |
+
def forward(self, x):
|
274 |
+
return self.block(x)
|
275 |
+
|
276 |
+
|
277 |
+
class _AsppPooling(nn.Module):
|
278 |
+
def __init__(self, in_channels, out_channels, norm_layer):
|
279 |
+
super(_AsppPooling, self).__init__()
|
280 |
+
self.gap = nn.Sequential(
|
281 |
+
nn.AdaptiveAvgPool2d(1),
|
282 |
+
nn.Conv2d(in_channels, out_channels, 1, bias=False),
|
283 |
+
norm_layer(out_channels),
|
284 |
+
nn.ReLU(True)
|
285 |
+
)
|
286 |
+
|
287 |
+
def forward(self, x):
|
288 |
+
size = x.size()[2:]
|
289 |
+
pool = self.gap(x)
|
290 |
+
out = F.interpolate(pool, size, mode='bilinear', align_corners=True)
|
291 |
+
return out
|
292 |
+
|
293 |
+
|
294 |
+
class _ASPP(nn.Module):
|
295 |
+
def __init__(self, in_channels, atrous_rates, norm_layer):
|
296 |
+
super(_ASPP, self).__init__()
|
297 |
+
out_channels = 256
|
298 |
+
self.b0 = nn.Sequential(
|
299 |
+
nn.Conv2d(in_channels, out_channels, 1, bias=False),
|
300 |
+
norm_layer(out_channels),
|
301 |
+
nn.ReLU(True)
|
302 |
+
)
|
303 |
+
|
304 |
+
rate1, rate2, rate3 = tuple(atrous_rates)
|
305 |
+
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
|
306 |
+
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
|
307 |
+
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
|
308 |
+
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
|
309 |
+
|
310 |
+
self.project = nn.Sequential(
|
311 |
+
nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
|
312 |
+
norm_layer(out_channels),
|
313 |
+
nn.ReLU(True),
|
314 |
+
nn.Dropout(0.5)
|
315 |
+
)
|
316 |
+
|
317 |
+
def forward(self, x):
|
318 |
+
feat1 = self.b0(x)
|
319 |
+
feat2 = self.b1(x)
|
320 |
+
feat3 = self.b2(x)
|
321 |
+
feat4 = self.b3(x)
|
322 |
+
feat5 = self.b4(x)
|
323 |
+
x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
324 |
+
x = self.project(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
class _DeepLabHead(nn.Module):
|
329 |
+
def __init__(self, num_classes, c1_channels=256, norm_layer=nn.BatchNorm2d):
|
330 |
+
super(_DeepLabHead, self).__init__()
|
331 |
+
self.aspp = _ASPP(2048, [12, 24, 36], norm_layer=norm_layer)
|
332 |
+
self.c1_block = _ConvBNReLU(c1_channels, 48, 3, padding=1, norm_layer=norm_layer)
|
333 |
+
self.block = nn.Sequential(
|
334 |
+
_ConvBNReLU(304, 256, 3, padding=1, norm_layer=norm_layer),
|
335 |
+
nn.Dropout(0.5),
|
336 |
+
_ConvBNReLU(256, 256, 3, padding=1, norm_layer=norm_layer),
|
337 |
+
nn.Dropout(0.1),
|
338 |
+
nn.Conv2d(256, num_classes, 1))
|
339 |
+
|
340 |
+
def forward(self, x, c1):
|
341 |
+
size = c1.size()[2:]
|
342 |
+
c1 = self.c1_block(c1)
|
343 |
+
x = self.aspp(x)
|
344 |
+
x = F.interpolate(x, size, mode='bilinear', align_corners=True)
|
345 |
+
return self.block(torch.cat([x, c1], dim=1))
|
346 |
+
|
347 |
+
|
348 |
+
class _CARM(nn.Module):
|
349 |
+
def __init__(self, in_planes, ratio=8):
|
350 |
+
super(_CARM, self).__init__()
|
351 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
352 |
+
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
353 |
+
|
354 |
+
self.fc1_1 = nn.Linear(in_planes, in_planes // ratio)
|
355 |
+
self.fc1_2 = nn.Linear(in_planes // ratio, in_planes)
|
356 |
+
|
357 |
+
self.fc2_1 = nn.Linear(in_planes, in_planes // ratio)
|
358 |
+
self.fc2_2 = nn.Linear(in_planes // ratio, in_planes)
|
359 |
+
self.relu = nn.ReLU(True)
|
360 |
+
|
361 |
+
self.sigmoid = nn.Sigmoid()
|
362 |
+
|
363 |
+
def forward(self, x):
|
364 |
+
avg_out = self.avg_pool(x)
|
365 |
+
avg_out = avg_out.view(avg_out.size(0), -1)
|
366 |
+
avg_out = self.fc1_2(self.relu(self.fc1_1(avg_out)))
|
367 |
+
|
368 |
+
max_out = self.max_pool(x)
|
369 |
+
max_out = max_out.view(max_out.size(0), -1)
|
370 |
+
max_out = self.fc2_2(self.relu(self.fc2_1(max_out)))
|
371 |
+
|
372 |
+
max_out_size = max_out.size()[1]
|
373 |
+
avg_out = torch.reshape(avg_out, (-1, max_out_size, 1, 1))
|
374 |
+
max_out = torch.reshape(max_out, (-1, max_out_size, 1, 1))
|
375 |
+
|
376 |
+
out = self.sigmoid(avg_out + max_out)
|
377 |
+
|
378 |
+
x = out * x
|
379 |
+
return x
|
380 |
+
|
381 |
+
|
382 |
+
class FSFB_CH(nn.Module):
|
383 |
+
def __init__(self, in_planes, num, ratio=8):
|
384 |
+
super(FSFB_CH, self).__init__()
|
385 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
386 |
+
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
387 |
+
|
388 |
+
self.fc1_1 = nn.Linear(in_planes, in_planes // ratio)
|
389 |
+
self.fc1_2 = nn.Linear(in_planes // ratio, num * in_planes)
|
390 |
+
|
391 |
+
self.fc2_1 = nn.Linear(in_planes, in_planes // ratio)
|
392 |
+
self.fc2_2 = nn.Linear(in_planes // ratio, num * in_planes)
|
393 |
+
self.relu = nn.ReLU(True)
|
394 |
+
|
395 |
+
self.fc3 = nn.Linear(num * in_planes, 2 * num * in_planes)
|
396 |
+
self.fc4 = nn.Linear(2 * num * in_planes, 2 * num * in_planes)
|
397 |
+
self.fc5 = nn.Linear(2 * num * in_planes, num * in_planes)
|
398 |
+
|
399 |
+
self.softmax = nn.Softmax(dim=3)
|
400 |
+
|
401 |
+
def forward(self, x, num):
|
402 |
+
avg_out = self.avg_pool(x)
|
403 |
+
avg_out = avg_out.view(avg_out.size(0), -1)
|
404 |
+
avg_out = self.fc1_2(self.relu(self.fc1_1(avg_out)))
|
405 |
+
|
406 |
+
max_out = self.max_pool(x)
|
407 |
+
max_out = max_out.view(max_out.size(0), -1)
|
408 |
+
max_out = self.fc2_2(self.relu(self.fc2_1(max_out)))
|
409 |
+
|
410 |
+
out = avg_out + max_out
|
411 |
+
out = self.relu(self.fc3(out))
|
412 |
+
out = self.relu(self.fc4(out))
|
413 |
+
out = self.relu(self.fc5(out)) # (N, num*in_planes)
|
414 |
+
|
415 |
+
out_size = out.size()[1]
|
416 |
+
out = torch.reshape(out, (-1, out_size // num, 1, num)) # (N, in_planes, 1, num )
|
417 |
+
out = self.softmax(out)
|
418 |
+
|
419 |
+
channel_scale = torch.chunk(out, num, dim=3) # (N, in_planes, 1, 1 )
|
420 |
+
|
421 |
+
return channel_scale
|
422 |
+
|
423 |
+
|
424 |
+
class FSFB_SP(nn.Module):
|
425 |
+
def __init__(self, num, norm_layer=nn.BatchNorm2d):
|
426 |
+
super(FSFB_SP, self).__init__()
|
427 |
+
self.conv = nn.Sequential(
|
428 |
+
nn.Conv2d(2, 2 * num, kernel_size=3, padding=1, bias=False),
|
429 |
+
norm_layer(2 * num),
|
430 |
+
nn.ReLU(True),
|
431 |
+
nn.Conv2d(2 * num, 4 * num, kernel_size=3, padding=1, bias=False),
|
432 |
+
norm_layer(4 * num),
|
433 |
+
nn.ReLU(True),
|
434 |
+
nn.Conv2d(4 * num, 4 * num, kernel_size=3, padding=1, bias=False),
|
435 |
+
norm_layer(4 * num),
|
436 |
+
nn.ReLU(True),
|
437 |
+
nn.Conv2d(4 * num, 2 * num, kernel_size=3, padding=1, bias=False),
|
438 |
+
norm_layer(2 * num),
|
439 |
+
nn.ReLU(True),
|
440 |
+
nn.Conv2d(2 * num, num, kernel_size=3, padding=1, bias=False)
|
441 |
+
)
|
442 |
+
self.softmax = nn.Softmax(dim=1)
|
443 |
+
|
444 |
+
def forward(self, x, num):
|
445 |
+
avg_out = torch.mean(x, dim=1, keepdim=True)
|
446 |
+
max_out, _ = torch.max(x, dim=1, keepdim=True)
|
447 |
+
x = torch.cat([avg_out, max_out], dim=1)
|
448 |
+
x = self.conv(x)
|
449 |
+
x = self.softmax(x)
|
450 |
+
spatial_scale = torch.chunk(x, num, dim=1)
|
451 |
+
return spatial_scale
|
452 |
+
|
453 |
+
|
454 |
+
##################################################################################################################
|
455 |
+
|
456 |
+
|
457 |
+
class _HFFM(nn.Module):
|
458 |
+
def __init__(self, in_channels, atrous_rates, norm_layer=nn.BatchNorm2d):
|
459 |
+
super(_HFFM, self).__init__()
|
460 |
+
out_channels = 256
|
461 |
+
self.b0 = nn.Sequential(
|
462 |
+
nn.Conv2d(in_channels, out_channels, 1, bias=False),
|
463 |
+
norm_layer(out_channels),
|
464 |
+
nn.ReLU(True)
|
465 |
+
)
|
466 |
+
|
467 |
+
rate1, rate2, rate3 = tuple(atrous_rates)
|
468 |
+
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
|
469 |
+
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
|
470 |
+
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
|
471 |
+
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
|
472 |
+
self.carm = _CARM(in_channels)
|
473 |
+
self.sa = FSFB_SP(4, norm_layer)
|
474 |
+
self.ca = FSFB_CH(out_channels, 4, 8)
|
475 |
+
|
476 |
+
def forward(self, x, num):
|
477 |
+
x = self.carm(x)
|
478 |
+
# feat1 = self.b0(x)
|
479 |
+
feat1 = self.b1(x)
|
480 |
+
feat2 = self.b2(x)
|
481 |
+
feat3 = self.b3(x)
|
482 |
+
feat4 = self.b4(x)
|
483 |
+
feat = feat1 + feat2 + feat3 + feat4
|
484 |
+
spatial_atten = self.sa(feat, num)
|
485 |
+
channel_atten = self.ca(feat, num)
|
486 |
+
|
487 |
+
feat_ca = channel_atten[0] * feat1 + channel_atten[1] * feat2 + channel_atten[2] * feat3 + channel_atten[
|
488 |
+
3] * feat4
|
489 |
+
feat_sa = spatial_atten[0] * feat1 + spatial_atten[1] * feat2 + spatial_atten[2] * feat3 + spatial_atten[
|
490 |
+
3] * feat4
|
491 |
+
feat_sa = feat_sa + feat_ca
|
492 |
+
|
493 |
+
return feat_sa
|
494 |
+
|
495 |
+
|
496 |
+
class _AFFM(nn.Module):
|
497 |
+
def __init__(self, in_channels=256, norm_layer=nn.BatchNorm2d):
|
498 |
+
super(_AFFM, self).__init__()
|
499 |
+
|
500 |
+
self.sa = FSFB_SP(2, norm_layer)
|
501 |
+
self.ca = FSFB_CH(in_channels, 2, 8)
|
502 |
+
self.carm = _CARM(in_channels)
|
503 |
+
|
504 |
+
def forward(self, feat1, feat2, hffm, num):
|
505 |
+
feat = feat1 + feat2
|
506 |
+
spatial_atten = self.sa(feat, num)
|
507 |
+
channel_atten = self.ca(feat, num)
|
508 |
+
|
509 |
+
feat_ca = channel_atten[0] * feat1 + channel_atten[1] * feat2
|
510 |
+
feat_sa = spatial_atten[0] * feat1 + spatial_atten[1] * feat2
|
511 |
+
output = self.carm(feat_sa + feat_ca + hffm)
|
512 |
+
# output = self.carm (feat_sa + hffm)
|
513 |
+
|
514 |
+
return output, channel_atten, spatial_atten
|
515 |
+
|
516 |
+
|
517 |
+
class block_Conv3x3(nn.Module):
|
518 |
+
def __init__(self, in_channels):
|
519 |
+
super(block_Conv3x3, self).__init__()
|
520 |
+
self.block = nn.Sequential(
|
521 |
+
nn.Conv2d(in_channels, 256, kernel_size=3, stride=1, padding=1, bias=False),
|
522 |
+
nn.BatchNorm2d(256),
|
523 |
+
nn.ReLU(True)
|
524 |
+
)
|
525 |
+
|
526 |
+
def forward(self, x):
|
527 |
+
return self.block(x)
|
528 |
+
|
529 |
+
|
530 |
+
class CDnetV2(nn.Module):
|
531 |
+
def __init__(self, in_channels=3,block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True):
|
532 |
+
self.inplanes = 256 # change
|
533 |
+
self.aux = aux
|
534 |
+
super().__init__()
|
535 |
+
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
536 |
+
# self.bn1 = nn.BatchNorm2d(64, affine = affine_par)
|
537 |
+
|
538 |
+
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False)
|
539 |
+
self.bn1 = nn.BatchNorm2d(64, affine=affine_par)
|
540 |
+
|
541 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
542 |
+
self.bn2 = nn.BatchNorm2d(64, affine=affine_par)
|
543 |
+
|
544 |
+
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
545 |
+
self.bn3 = nn.BatchNorm2d(64, affine=affine_par)
|
546 |
+
|
547 |
+
self.relu = nn.ReLU(inplace=True)
|
548 |
+
|
549 |
+
self.dropout = nn.Dropout(0.3)
|
550 |
+
for i in self.bn1.parameters():
|
551 |
+
i.requires_grad = False
|
552 |
+
|
553 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change
|
554 |
+
|
555 |
+
# self.layer1 = self._make_layer(block, 64, layers[0])
|
556 |
+
|
557 |
+
self.layerx_1 = Res_block_1(64, 64, stride=1, dilation=1)
|
558 |
+
self.layerx_2 = Res_block_2(256, 64, stride=1, dilation=1)
|
559 |
+
self.layerx_3 = Res_block_3(256, 64, stride=2, dilation=1)
|
560 |
+
|
561 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
562 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
|
563 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
|
564 |
+
# self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes)
|
565 |
+
|
566 |
+
self.hffm = _HFFM(2048, [6, 12, 18])
|
567 |
+
self.affm_1 = _AFFM()
|
568 |
+
self.affm_2 = _AFFM()
|
569 |
+
self.affm_3 = _AFFM()
|
570 |
+
self.affm_4 = _AFFM()
|
571 |
+
self.carm = _CARM(256)
|
572 |
+
|
573 |
+
self.con_layer1_1 = block_Conv3x3(256)
|
574 |
+
self.con_res2 = block_Conv3x3(256)
|
575 |
+
self.con_res3 = block_Conv3x3(512)
|
576 |
+
self.con_res4 = block_Conv3x3(1024)
|
577 |
+
self.con_res5 = block_Conv3x3(2048)
|
578 |
+
|
579 |
+
self.dsn1 = nn.Sequential(
|
580 |
+
nn.Conv2d(256, num_classes, kernel_size=1, stride=1, padding=0)
|
581 |
+
)
|
582 |
+
|
583 |
+
self.dsn2 = nn.Sequential(
|
584 |
+
nn.Conv2d(256, num_classes, kernel_size=1, stride=1, padding=0)
|
585 |
+
)
|
586 |
+
|
587 |
+
for m in self.modules():
|
588 |
+
if isinstance(m, nn.Conv2d):
|
589 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
590 |
+
m.weight.data.normal_(0, 0.01)
|
591 |
+
elif isinstance(m, nn.BatchNorm2d):
|
592 |
+
m.weight.data.fill_(1)
|
593 |
+
m.bias.data.zero_()
|
594 |
+
# for i in m.parameters():
|
595 |
+
# i.requires_grad = False
|
596 |
+
|
597 |
+
# self.inplanes = 256 # change
|
598 |
+
|
599 |
+
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
|
600 |
+
downsample = None
|
601 |
+
if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4:
|
602 |
+
downsample = nn.Sequential(
|
603 |
+
nn.Conv2d(self.inplanes, planes * block.expansion,
|
604 |
+
kernel_size=1, stride=stride, bias=False),
|
605 |
+
nn.BatchNorm2d(planes * block.expansion, affine=affine_par))
|
606 |
+
for i in downsample._modules['1'].parameters():
|
607 |
+
i.requires_grad = False
|
608 |
+
layers = []
|
609 |
+
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample))
|
610 |
+
self.inplanes = planes * block.expansion
|
611 |
+
for i in range(1, blocks):
|
612 |
+
layers.append(block(self.inplanes, planes, dilation=dilation))
|
613 |
+
|
614 |
+
return nn.Sequential(*layers)
|
615 |
+
|
616 |
+
# def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
|
617 |
+
# return block(dilation_series,padding_series,num_classes)
|
618 |
+
|
619 |
+
def base_forward(self, x):
|
620 |
+
x = self.relu(self.bn1(self.conv1(x))) # 1/2
|
621 |
+
x = self.relu(self.bn2(self.conv2(x)))
|
622 |
+
x = self.relu(self.bn3(self.conv3(x)))
|
623 |
+
x = self.maxpool(x) # 1/4
|
624 |
+
|
625 |
+
# x = self.layer1(x) # 1/8
|
626 |
+
|
627 |
+
# layer1
|
628 |
+
x = self.layerx_1(x) # 1/4
|
629 |
+
layer1_0 = x
|
630 |
+
|
631 |
+
x = self.layerx_2(x) # 1/4
|
632 |
+
layer1_0 = self.con_layer1_1(x + layer1_0) # 256
|
633 |
+
size_layer1_0 = layer1_0.size()[2:]
|
634 |
+
|
635 |
+
x = self.layerx_3(x) # 1/8
|
636 |
+
res2 = self.con_res2(x) # 256
|
637 |
+
size_res2 = res2.size()[2:]
|
638 |
+
|
639 |
+
# layer2-4
|
640 |
+
x = self.layer2(x) # 1/16
|
641 |
+
res3 = self.con_res3(x) # 256
|
642 |
+
x = self.layer3(x) # 1/16
|
643 |
+
|
644 |
+
res4 = self.con_res4(x) # 256
|
645 |
+
x = self.layer4(x) # 1/16
|
646 |
+
res5 = self.con_res5(x) # 256
|
647 |
+
|
648 |
+
# x = self.res5_con1x1(torch.cat([x, res4], dim=1))
|
649 |
+
return layer1_0, res2, res3, res4, res5, x, size_layer1_0, size_res2
|
650 |
+
|
651 |
+
# return res2, res3, res4, res5, x, layer_1024, size_res2
|
652 |
+
|
653 |
+
def forward(self, x):
|
654 |
+
# size = x.size()[2:]
|
655 |
+
layer1_0, res2, res3, res4, res5, layer4, size_layer1_0, size_res2 = self.base_forward(x)
|
656 |
+
|
657 |
+
hffm = self.hffm(layer4, 4) # 256 HFFM
|
658 |
+
res5 = res5 + hffm
|
659 |
+
aux_feature = res5 # loss_aux
|
660 |
+
# res5 = self.carm(res5)
|
661 |
+
res5, _, _ = self.affm_1(res4, res5, hffm, 2) # 1/16
|
662 |
+
# aux_feature = res5
|
663 |
+
res5, _, _ = self.affm_2(res3, res5, hffm, 2) # 1/16
|
664 |
+
|
665 |
+
res5 = F.interpolate(res5, size_res2, mode='bilinear', align_corners=True)
|
666 |
+
res5, _, _ = self.affm_3(res2, res5, F.interpolate(hffm, size_res2, mode='bilinear', align_corners=True), 2)
|
667 |
+
|
668 |
+
res5 = F.interpolate(res5, size_layer1_0, mode='bilinear', align_corners=True)
|
669 |
+
res5, _, _ = self.affm_4(layer1_0, res5,
|
670 |
+
F.interpolate(hffm, size_layer1_0, mode='bilinear', align_corners=True), 2)
|
671 |
+
|
672 |
+
output = self.dsn1(res5)
|
673 |
+
|
674 |
+
if self.aux:
|
675 |
+
auxout = self.dsn2(aux_feature)
|
676 |
+
# auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True)
|
677 |
+
# outputs.append(auxout)
|
678 |
+
size = x.size()[2:]
|
679 |
+
pred, pred_aux = output, auxout
|
680 |
+
pred = F.interpolate(pred, size, mode='bilinear', align_corners=True)
|
681 |
+
pred_aux = F.interpolate(pred_aux, size, mode='bilinear', align_corners=True)
|
682 |
+
return pred
|
683 |
+
return pred, pred_aux
|
684 |
+
|
685 |
+
|
686 |
+
if __name__ == '__main__':
|
687 |
+
model = CDnetV2(num_classes=3)
|
688 |
+
fake_image = torch.rand(2, 3, 256, 256)
|
689 |
+
output = model(fake_image)
|
690 |
+
for out in output:
|
691 |
+
print(out.shape)
|
692 |
+
# torch.Size([2, 3, 256, 256])
|
693 |
+
# torch.Size([2, 3, 256, 256])
|
cloud_adapter/cloud_adapter.py
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from einops import rearrange
|
4 |
+
from torch import nn, einsum
|
5 |
+
from einops import rearrange
|
6 |
+
from mmseg.models.builder import MODELS
|
7 |
+
import math
|
8 |
+
import torch
|
9 |
+
from torch import nn as nn
|
10 |
+
from mmseg.models.builder import MODELS
|
11 |
+
from timm.layers import DropPath, trunc_normal_
|
12 |
+
from typing import List
|
13 |
+
from timm.layers import create_act_layer
|
14 |
+
from functools import partial
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import math
|
22 |
+
from timm.layers import CondConv2d, get_condconv_initializer, create_conv2d, DropPath, get_norm_act_layer
|
23 |
+
|
24 |
+
|
25 |
+
class LoRaMLP(nn.Module):
|
26 |
+
def __init__(self, in_dim, out_dim, rank_dim=8):
|
27 |
+
super().__init__()
|
28 |
+
self.loramlp = nn.Sequential(
|
29 |
+
nn.Linear(in_dim, rank_dim, bias=False),
|
30 |
+
nn.Linear(rank_dim, out_dim, bias=False),
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
return self.loramlp(x)
|
35 |
+
|
36 |
+
|
37 |
+
class CrossAttention(nn.Module):
|
38 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, rank_dim=None):
|
39 |
+
super().__init__()
|
40 |
+
inner_dim = dim_head * heads # 512
|
41 |
+
context_dim = query_dim if context_dim is None else context_dim
|
42 |
+
|
43 |
+
self.scale = dim_head ** -0.5
|
44 |
+
self.heads = heads
|
45 |
+
|
46 |
+
if not rank_dim:
|
47 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
48 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
49 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
50 |
+
|
51 |
+
self.to_out = nn.Linear(inner_dim, query_dim, bias=False)
|
52 |
+
else:
|
53 |
+
self.to_q = LoRaMLP(query_dim, inner_dim, rank_dim=rank_dim)
|
54 |
+
self.to_k = LoRaMLP(context_dim, inner_dim, rank_dim=rank_dim)
|
55 |
+
self.to_v = LoRaMLP(context_dim, inner_dim, rank_dim=rank_dim)
|
56 |
+
|
57 |
+
self.to_out = LoRaMLP(inner_dim, query_dim, rank_dim=rank_dim)
|
58 |
+
|
59 |
+
def forward(self, x, context):
|
60 |
+
h = self.heads
|
61 |
+
|
62 |
+
q = self.to_q(x)
|
63 |
+
k = self.to_k(context)
|
64 |
+
v = self.to_v(context)
|
65 |
+
|
66 |
+
q, k, v = map(lambda t: rearrange(
|
67 |
+
t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
68 |
+
|
69 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
70 |
+
|
71 |
+
attn = sim.softmax(dim=-1)
|
72 |
+
|
73 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
74 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
75 |
+
|
76 |
+
return self.to_out(out)
|
77 |
+
|
78 |
+
|
79 |
+
def num_groups(group_size, channels):
|
80 |
+
if not group_size:
|
81 |
+
return 1
|
82 |
+
else:
|
83 |
+
assert channels % group_size == 0
|
84 |
+
return channels // group_size
|
85 |
+
|
86 |
+
|
87 |
+
def _init_weight_goog(m, n='', fix_group_fanout=True):
|
88 |
+
if isinstance(m, CondConv2d):
|
89 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
90 |
+
if fix_group_fanout:
|
91 |
+
fan_out //= m.groups
|
92 |
+
init_weight_fn = get_condconv_initializer(
|
93 |
+
lambda w: nn.init.normal_(w, 0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape)
|
94 |
+
init_weight_fn(m.weight)
|
95 |
+
if m.bias is not None:
|
96 |
+
nn.init.zeros_(m.bias)
|
97 |
+
elif isinstance(m, nn.Conv2d):
|
98 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
99 |
+
if fix_group_fanout:
|
100 |
+
fan_out //= m.groups
|
101 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2.0 / fan_out))
|
102 |
+
if m.bias is not None:
|
103 |
+
nn.init.zeros_(m.bias)
|
104 |
+
elif isinstance(m, nn.BatchNorm2d):
|
105 |
+
nn.init.ones_(m.weight)
|
106 |
+
nn.init.zeros_(m.bias)
|
107 |
+
elif isinstance(m, nn.Linear):
|
108 |
+
fan_out = m.weight.size(0)
|
109 |
+
fan_in = 0
|
110 |
+
if 'routing_fn' in n:
|
111 |
+
fan_in = m.weight.size(1)
|
112 |
+
init_range = 1.0 / math.sqrt(fan_in + fan_out)
|
113 |
+
nn.init.uniform_(m.weight, -init_range, init_range)
|
114 |
+
if m.bias is not None:
|
115 |
+
nn.init.zeros_(m.bias)
|
116 |
+
|
117 |
+
|
118 |
+
class DepthwiseSeparableConv(nn.Module):
|
119 |
+
def __init__(
|
120 |
+
self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, group_size=1, pad_type='',
|
121 |
+
noskip=False, pw_kernel_size=1, pw_act=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
|
122 |
+
se_layer=None, drop_path_rate=0.):
|
123 |
+
super(DepthwiseSeparableConv, self).__init__()
|
124 |
+
norm_act_layer = get_norm_act_layer(norm_layer)
|
125 |
+
groups = num_groups(group_size, in_chs)
|
126 |
+
self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip
|
127 |
+
self.has_pw_act = pw_act
|
128 |
+
|
129 |
+
self.conv_dw = create_conv2d(
|
130 |
+
in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, groups=groups)
|
131 |
+
self.bn1 = norm_act_layer(in_chs, inplace=True)
|
132 |
+
|
133 |
+
self.se = se_layer(
|
134 |
+
in_chs, act_layer=act_layer) if se_layer else nn.Identity()
|
135 |
+
|
136 |
+
self.conv_pw = create_conv2d(
|
137 |
+
in_chs, out_chs, pw_kernel_size, padding=pad_type)
|
138 |
+
self.bn2 = norm_act_layer(
|
139 |
+
out_chs, inplace=True, apply_act=self.has_pw_act)
|
140 |
+
self.drop_path = DropPath(
|
141 |
+
drop_path_rate) if drop_path_rate else nn.Identity()
|
142 |
+
|
143 |
+
def feature_info(self, location):
|
144 |
+
if location == 'expansion':
|
145 |
+
return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels)
|
146 |
+
else:
|
147 |
+
return dict(module='', hook_type='', num_chs=self.conv_pw.out_channels)
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
shortcut = x
|
151 |
+
x = self.conv_dw(x)
|
152 |
+
x = self.bn1(x)
|
153 |
+
x = self.se(x)
|
154 |
+
x = self.conv_pw(x)
|
155 |
+
x = self.bn2(x)
|
156 |
+
if self.has_skip:
|
157 |
+
x = self.drop_path(x) + shortcut
|
158 |
+
return x
|
159 |
+
|
160 |
+
|
161 |
+
class PMAAConvBlock(nn.Module):
|
162 |
+
def __init__(self, in_channels=3, hidden_channels=256, depth=4, norm=nn.BatchNorm2d, act=nn.ReLU, return_multi_feats=False, return_last_feature=True, has_stem=True, has_block=True):
|
163 |
+
super().__init__()
|
164 |
+
self.return_last_feature = return_last_feature
|
165 |
+
self.depth = depth
|
166 |
+
self.has_stem = has_stem
|
167 |
+
self.return_multi_feats = return_multi_feats
|
168 |
+
|
169 |
+
self.proj_1x1 = DepthwiseSeparableConv(
|
170 |
+
in_channels, hidden_channels, dw_kernel_size=1, norm_layer=norm, act_layer=act)
|
171 |
+
|
172 |
+
self.spp_dw = nn.ModuleList()
|
173 |
+
|
174 |
+
if has_stem:
|
175 |
+
self.spp_dw.append(
|
176 |
+
DepthwiseSeparableConv(hidden_channels, hidden_channels, dw_kernel_size=3,
|
177 |
+
stride=1, group_size=hidden_channels, pad_type="same")
|
178 |
+
)
|
179 |
+
else:
|
180 |
+
self.spp_dw.append(nn.Identity())
|
181 |
+
|
182 |
+
if has_block:
|
183 |
+
for _ in range(self.depth):
|
184 |
+
self.spp_dw.append(
|
185 |
+
DepthwiseSeparableConv(
|
186 |
+
hidden_channels, hidden_channels, dw_kernel_size=3, stride=2, group_size=hidden_channels
|
187 |
+
)
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
for _ in range(self.depth):
|
191 |
+
self.spp_dw.append(
|
192 |
+
nn.MaxPool2d(kernel_size=2, stride=2)
|
193 |
+
)
|
194 |
+
self._init_weights()
|
195 |
+
|
196 |
+
def forward(self, x):
|
197 |
+
B, C, H, W = x.shape
|
198 |
+
output1 = self.proj_1x1(x)
|
199 |
+
output = [self.spp_dw[0](output1)]
|
200 |
+
|
201 |
+
for k in range(1, self.depth+1):
|
202 |
+
out_k = self.spp_dw[k](output[-1])
|
203 |
+
output.append(out_k)
|
204 |
+
|
205 |
+
if self.return_multi_feats:
|
206 |
+
return output[1:]
|
207 |
+
else:
|
208 |
+
if self.return_last_feature:
|
209 |
+
return output[-1]
|
210 |
+
global_f = torch.zeros(
|
211 |
+
output[-1].shape, requires_grad=True, device=output1.device)
|
212 |
+
for fea in output:
|
213 |
+
global_f = global_f + F.adaptive_avg_pool2d(
|
214 |
+
fea, output_size=output[-1].shape[-2:]
|
215 |
+
)
|
216 |
+
return global_f
|
217 |
+
|
218 |
+
def _init_weights(self):
|
219 |
+
init_fn = _init_weight_goog
|
220 |
+
for n, m in self.named_modules():
|
221 |
+
init_fn(m, n)
|
222 |
+
|
223 |
+
|
224 |
+
class ConvnextInteractiveModule(nn.Module):
|
225 |
+
def __init__(self, emd_dim=1024, context_dim=256, rank_dim=None):
|
226 |
+
super().__init__()
|
227 |
+
self.attn = CrossAttention(emd_dim, context_dim, rank_dim=rank_dim)
|
228 |
+
|
229 |
+
def forward(self, x, cache, index):
|
230 |
+
# x: 1024 2 1024
|
231 |
+
if isinstance(cache, list) or isinstance(cache, tuple):
|
232 |
+
# len(cache) 4 cache[4]-23
|
233 |
+
# 0-5->0 6-11 -> 1 12-17->2 18-23->3
|
234 |
+
cache = cache[index]
|
235 |
+
cache = F.interpolate(
|
236 |
+
cache, (int(math.sqrt(x.shape[0])), int(math.sqrt(x.shape[0]))), mode="bilinear", align_corners=False
|
237 |
+
)
|
238 |
+
cache = cache.flatten(2) # B C N
|
239 |
+
cache = cache.permute(2, 0, 1) # N B C
|
240 |
+
|
241 |
+
# Reshape: batch first
|
242 |
+
x = x.permute(1, 0, 2) # B N C
|
243 |
+
cache = cache.permute(1, 0, 2) # B N C
|
244 |
+
return (x + self.attn(x, cache)).permute(1, 0, 2)
|
245 |
+
|
246 |
+
|
247 |
+
class PMAAInteractiveModule(nn.Module):
|
248 |
+
def __init__(self,
|
249 |
+
emd_dim=1024,
|
250 |
+
context_dim=64,
|
251 |
+
kernel: int = 1,
|
252 |
+
norm=nn.BatchNorm2d,
|
253 |
+
local_groups=32,
|
254 |
+
global_groups=2,
|
255 |
+
return_multi_feats=False,
|
256 |
+
):
|
257 |
+
super().__init__()
|
258 |
+
self.return_multi_feats = return_multi_feats
|
259 |
+
self.local_embedding = nn.Sequential(
|
260 |
+
nn.Conv2d(emd_dim, emd_dim, kernel, groups=local_groups,
|
261 |
+
padding=int((kernel - 1) / 2), bias=False),
|
262 |
+
norm(emd_dim)
|
263 |
+
)
|
264 |
+
self.global_embedding = nn.Sequential(
|
265 |
+
nn.Conv2d(context_dim, emd_dim, kernel, groups=global_groups,
|
266 |
+
padding=int((kernel - 1) / 2), bias=False),
|
267 |
+
norm(emd_dim)
|
268 |
+
)
|
269 |
+
self.global_act = nn.Sequential(
|
270 |
+
nn.Conv2d(context_dim, emd_dim, kernel, groups=global_groups,
|
271 |
+
padding=int((kernel - 1) / 2), bias=False),
|
272 |
+
norm(emd_dim)
|
273 |
+
)
|
274 |
+
self.act = nn.Sigmoid()
|
275 |
+
self._init_weights()
|
276 |
+
|
277 |
+
def _init_weights(self):
|
278 |
+
init_fn = _init_weight_goog
|
279 |
+
for n, m in self.named_modules():
|
280 |
+
init_fn(m, n)
|
281 |
+
|
282 |
+
def forward(self, x, cache, index):
|
283 |
+
if isinstance(cache, list) or isinstance(cache, tuple):
|
284 |
+
cache = cache[index]
|
285 |
+
N, B, C = x.shape
|
286 |
+
H = W = int(math.sqrt(N))
|
287 |
+
# reshape x -> B, C, H, W
|
288 |
+
x = x.permute(1, 2, 0).reshape(B, C, H, W)
|
289 |
+
local_feat = self.local_embedding(x) # 32
|
290 |
+
global_act = self.global_act(cache)
|
291 |
+
sig_act = F.interpolate(self.act(global_act), size=(H, W)) # 32
|
292 |
+
|
293 |
+
global_feat = self.global_embedding(cache)
|
294 |
+
global_feat = F.interpolate(global_feat, size=(H, W)) # 32
|
295 |
+
|
296 |
+
out = local_feat * sig_act + global_feat
|
297 |
+
|
298 |
+
return out.permute(2, 3, 0, 1).reshape(N, B, C)
|
299 |
+
|
300 |
+
|
301 |
+
class LayerNorm(nn.Module):
|
302 |
+
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
303 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
304 |
+
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
305 |
+
with shape (batch_size, channels, height, width).
|
306 |
+
"""
|
307 |
+
|
308 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
309 |
+
super().__init__()
|
310 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
311 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
312 |
+
self.eps = eps
|
313 |
+
self.data_format = data_format
|
314 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
315 |
+
raise NotImplementedError
|
316 |
+
self.normalized_shape = (normalized_shape, )
|
317 |
+
|
318 |
+
def forward(self, x):
|
319 |
+
if self.data_format == "channels_last":
|
320 |
+
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
321 |
+
elif self.data_format == "channels_first":
|
322 |
+
u = x.mean(1, keepdim=True)
|
323 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
324 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
325 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
326 |
+
return x
|
327 |
+
|
328 |
+
|
329 |
+
class Block(nn.Module):
|
330 |
+
r""" ConvNeXt Block. There are two equivalent implementations:
|
331 |
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
332 |
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
333 |
+
We use (2) as we find it slightly faster in PyTorch
|
334 |
+
|
335 |
+
Args:
|
336 |
+
dim (int): Number of input channels.
|
337 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
338 |
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
339 |
+
"""
|
340 |
+
|
341 |
+
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
|
342 |
+
super().__init__()
|
343 |
+
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7,
|
344 |
+
padding=3, groups=dim) # depthwise conv
|
345 |
+
self.norm = LayerNorm(dim, eps=1e-6)
|
346 |
+
# pointwise/1x1 convs, implemented with linear layers
|
347 |
+
self.pwconv1 = nn.Linear(dim, 4 * dim)
|
348 |
+
self.act = nn.GELU()
|
349 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
350 |
+
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
|
351 |
+
requires_grad=True) if layer_scale_init_value > 0 else None
|
352 |
+
self.drop_path = DropPath(
|
353 |
+
drop_path) if drop_path > 0. else nn.Identity()
|
354 |
+
|
355 |
+
def forward(self, x):
|
356 |
+
input = x
|
357 |
+
x = self.dwconv(x)
|
358 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
359 |
+
x = self.norm(x)
|
360 |
+
x = self.pwconv1(x)
|
361 |
+
x = self.act(x)
|
362 |
+
x = self.pwconv2(x)
|
363 |
+
if self.gamma is not None:
|
364 |
+
x = self.gamma * x
|
365 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
366 |
+
|
367 |
+
x = input + self.drop_path(x)
|
368 |
+
return x
|
369 |
+
|
370 |
+
|
371 |
+
class ConvNeXt(nn.Module):
|
372 |
+
r""" ConvNeXt
|
373 |
+
A PyTorch impl of : `A ConvNet for the 2020s` -
|
374 |
+
https://arxiv.org/pdf/2201.03545.pdf
|
375 |
+
|
376 |
+
Args:
|
377 |
+
in_chans (int): Number of input image channels. Default: 3
|
378 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
379 |
+
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
|
380 |
+
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
|
381 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
382 |
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
383 |
+
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
|
384 |
+
"""
|
385 |
+
|
386 |
+
def __init__(self, in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768],
|
387 |
+
drop_path_rate=0., layer_scale_init_value=1e-6, out_indices=[0, 1, 2, 3],
|
388 |
+
return_multi_feats=False,
|
389 |
+
return_last_feature=True
|
390 |
+
):
|
391 |
+
super().__init__()
|
392 |
+
self.return_last_feature = return_last_feature
|
393 |
+
self.return_multi_feats = return_multi_feats
|
394 |
+
|
395 |
+
# stem and 3 intermediate downsampling conv layers
|
396 |
+
self.downsample_layers = nn.ModuleList()
|
397 |
+
stem = nn.Sequential(
|
398 |
+
nn.Conv2d(in_chans, dims[0], kernel_size=2, stride=2),
|
399 |
+
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
|
400 |
+
)
|
401 |
+
self.downsample_layers.append(stem)
|
402 |
+
for i in range(3):
|
403 |
+
downsample_layer = nn.Sequential(
|
404 |
+
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
405 |
+
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
|
406 |
+
)
|
407 |
+
self.downsample_layers.append(downsample_layer)
|
408 |
+
|
409 |
+
# 4 feature resolution stages, each consisting of multiple residual blocks
|
410 |
+
self.stages = nn.ModuleList()
|
411 |
+
dp_rates = [x.item()
|
412 |
+
for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
413 |
+
cur = 0
|
414 |
+
for i in range(4):
|
415 |
+
stage = nn.Sequential(
|
416 |
+
*[Block(dim=dims[i], drop_path=dp_rates[cur + j],
|
417 |
+
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
|
418 |
+
)
|
419 |
+
self.stages.append(stage)
|
420 |
+
cur += depths[i]
|
421 |
+
|
422 |
+
self.out_indices = out_indices
|
423 |
+
|
424 |
+
norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first")
|
425 |
+
for i_layer in range(4):
|
426 |
+
layer = norm_layer(dims[i_layer])
|
427 |
+
layer_name = f'norm{i_layer}'
|
428 |
+
self.add_module(layer_name, layer)
|
429 |
+
|
430 |
+
self.apply(self._init_weights)
|
431 |
+
|
432 |
+
def _init_weights(self, m):
|
433 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
434 |
+
trunc_normal_(m.weight, std=.02)
|
435 |
+
nn.init.constant_(m.bias, 0)
|
436 |
+
|
437 |
+
def init_weights(self, pretrained=None):
|
438 |
+
"""Initialize the weights in backbone.
|
439 |
+
Args:
|
440 |
+
pretrained (str, optional): Path to pre-trained weights.
|
441 |
+
Defaults to None.
|
442 |
+
"""
|
443 |
+
|
444 |
+
def _init_weights(m):
|
445 |
+
if isinstance(m, nn.Linear):
|
446 |
+
trunc_normal_(m.weight, std=.02)
|
447 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
448 |
+
nn.init.constant_(m.bias, 0)
|
449 |
+
elif isinstance(m, nn.LayerNorm):
|
450 |
+
nn.init.constant_(m.bias, 0)
|
451 |
+
nn.init.constant_(m.weight, 1.0)
|
452 |
+
|
453 |
+
if isinstance(pretrained, str):
|
454 |
+
self.apply(_init_weights)
|
455 |
+
# logger = get_root_logger()
|
456 |
+
# load_checkpoint(self, pretrained, strict=False, logger=logger)
|
457 |
+
elif pretrained is None:
|
458 |
+
self.apply(_init_weights)
|
459 |
+
else:
|
460 |
+
raise TypeError('pretrained must be a str or None')
|
461 |
+
|
462 |
+
def forward_features(self, x):
|
463 |
+
outs = []
|
464 |
+
for i in range(4):
|
465 |
+
x = self.downsample_layers[i](x)
|
466 |
+
x = self.stages[i](x)
|
467 |
+
if i in self.out_indices:
|
468 |
+
norm_layer = getattr(self, f'norm{i}')
|
469 |
+
x_out = norm_layer(x)
|
470 |
+
outs.append(x_out)
|
471 |
+
if self.return_multi_feats:
|
472 |
+
return tuple(outs)
|
473 |
+
if self.return_last_feature:
|
474 |
+
return outs[-1]
|
475 |
+
global_f = torch.zeros(
|
476 |
+
outs[-1].shape, requires_grad=True, device=outs[-1].device)
|
477 |
+
for fea in outs:
|
478 |
+
global_f = global_f + F.adaptive_avg_pool2d(
|
479 |
+
fea, output_size=outs[-1].shape[-2:]
|
480 |
+
)
|
481 |
+
return global_f
|
482 |
+
|
483 |
+
def forward(self, x):
|
484 |
+
x = self.forward_features(x)
|
485 |
+
return x
|
486 |
+
|
487 |
+
|
488 |
+
class NoAdaptingModule(nn.Identity):
|
489 |
+
def __init__(self):
|
490 |
+
super().__init__()
|
491 |
+
|
492 |
+
def forward(self, x, cache, layer):
|
493 |
+
return x
|
494 |
+
|
495 |
+
|
496 |
+
@MODELS.register_module()
|
497 |
+
class CloudAdapter(nn.Module):
|
498 |
+
def __init__(self,
|
499 |
+
cnn_type="convnext", # convnext or mobilenet
|
500 |
+
int_type="convnext", # cross_attention or
|
501 |
+
# 共同的参数 start
|
502 |
+
emd_dim=1024,
|
503 |
+
num_layers=24,
|
504 |
+
|
505 |
+
# 先判断是否返回多特征,之后再判断是否进行特征融合
|
506 |
+
return_multi_feats=True,
|
507 |
+
return_last_feature=False,
|
508 |
+
|
509 |
+
# 共同的参数 end
|
510 |
+
|
511 |
+
# pmaa 提取单个特征 or 多尺寸特征 start
|
512 |
+
hidden_channels=256,
|
513 |
+
depth=4,
|
514 |
+
norm=nn.BatchNorm2d,
|
515 |
+
act=nn.ReLU,
|
516 |
+
# pmaa 提取单个特征 or 多尺寸特征 end
|
517 |
+
|
518 |
+
# pmaa net start
|
519 |
+
local_groups=1,
|
520 |
+
global_groups=1,
|
521 |
+
# pmaa net end
|
522 |
+
|
523 |
+
# convnext 提取单个特征 or 多尺寸特征 start
|
524 |
+
context_dim=256,
|
525 |
+
rank_dim=None,
|
526 |
+
# convnext 提取单个特征 or 多尺寸特征 end,
|
527 |
+
has_stem=True,
|
528 |
+
has_block=True,
|
529 |
+
):
|
530 |
+
super().__init__()
|
531 |
+
self.cnn = nn.Identity()
|
532 |
+
self.net = nn.Identity()
|
533 |
+
if cnn_type == "pmaa":
|
534 |
+
self.cnn = PMAAConvBlock(
|
535 |
+
hidden_channels=hidden_channels,
|
536 |
+
depth=depth,
|
537 |
+
norm=norm,
|
538 |
+
act=act,
|
539 |
+
return_multi_feats=return_multi_feats,
|
540 |
+
return_last_feature=return_last_feature,
|
541 |
+
has_stem=has_stem,
|
542 |
+
has_block=has_block
|
543 |
+
)
|
544 |
+
elif cnn_type == "convnext":
|
545 |
+
self.cnn = ConvNeXt(depths=[1]*4,
|
546 |
+
dims=[context_dim]*4,
|
547 |
+
return_multi_feats=return_multi_feats,
|
548 |
+
return_last_feature=return_last_feature
|
549 |
+
)
|
550 |
+
|
551 |
+
else:
|
552 |
+
raise ValueError(
|
553 |
+
f"cnn_type must in ['convnext','pmaa'],but got {cnn_type}")
|
554 |
+
|
555 |
+
if int_type == "convnext":
|
556 |
+
self.net = nn.ModuleList(
|
557 |
+
ConvnextInteractiveModule(emd_dim, context_dim, rank_dim)
|
558 |
+
for _ in range(num_layers)
|
559 |
+
)
|
560 |
+
elif int_type == "pmaa":
|
561 |
+
self.net = nn.ModuleList(
|
562 |
+
PMAAInteractiveModule(
|
563 |
+
emd_dim, context_dim, local_groups=local_groups, global_groups=global_groups)
|
564 |
+
for _ in range(num_layers)
|
565 |
+
)
|
566 |
+
|
567 |
+
elif int_type == "no_adapting":
|
568 |
+
self.net = nn.ModuleList(
|
569 |
+
NoAdaptingModule() for _ in range(num_layers)
|
570 |
+
)
|
571 |
+
else:
|
572 |
+
raise ValueError(
|
573 |
+
f"int_type must in ['convnext','pmaa'],but got {int_type}")
|
574 |
+
|
575 |
+
def forward(self, feats, layer, batch_first=True, has_cls_token=True, cache=None):
|
576 |
+
if batch_first:
|
577 |
+
feats = feats.permute(1, 0, 2) # 1025 2 1024
|
578 |
+
if has_cls_token:
|
579 |
+
cls_token, feats = torch.tensor_split(feats, [1], dim=0)
|
580 |
+
# 24 // 1
|
581 |
+
# feat: 1024 2 1024
|
582 |
+
feats = self.net[layer].forward(
|
583 |
+
feats, cache, layer//(len(self.net) // 4))
|
584 |
+
|
585 |
+
if has_cls_token:
|
586 |
+
feats = torch.cat([cls_token, feats], dim=0)
|
587 |
+
if batch_first:
|
588 |
+
feats = feats.permute(1, 0, 2)
|
589 |
+
return feats
|
590 |
+
|
cloud_adapter/cloud_adapter_dinov2.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mmseg.models.builder import BACKBONES, MODELS
|
2 |
+
from torch import nn as nn
|
3 |
+
from .cloud_adapter import CloudAdapter
|
4 |
+
from .dino_v2 import DinoVisionTransformer
|
5 |
+
from .utils import set_requires_grad, set_train
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
|
10 |
+
@BACKBONES.register_module()
|
11 |
+
class CloudAdapterDinoVisionTransformer(DinoVisionTransformer):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
cloud_adapter_config=None,
|
15 |
+
has_cat=False,
|
16 |
+
# [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ],
|
17 |
+
adapter_index=[0, 6, 12, 18], # Transformer Block 的索引
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
super().__init__(**kwargs)
|
21 |
+
self.cloud_adapter: CloudAdapter = MODELS.build(cloud_adapter_config)
|
22 |
+
self.has_cat = has_cat
|
23 |
+
self.adapter_index = adapter_index
|
24 |
+
|
25 |
+
def forward_features(self, x, masks=None):
|
26 |
+
B, _, h, w = x.shape
|
27 |
+
cache = self.cloud_adapter.cnn(x) # 得到多尺度特征或者单个特征
|
28 |
+
H, W = h // self.patch_size, w // self.patch_size
|
29 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
30 |
+
outs = []
|
31 |
+
cur_idx = 0 # 交互模块的索引
|
32 |
+
for idx, blk in enumerate(self.blocks):
|
33 |
+
x = blk(x)
|
34 |
+
if idx in self.adapter_index:
|
35 |
+
x = self.cloud_adapter.forward(
|
36 |
+
x,
|
37 |
+
cur_idx,
|
38 |
+
batch_first=True,
|
39 |
+
has_cls_token=True,
|
40 |
+
cache=cache,
|
41 |
+
)
|
42 |
+
cur_idx += 1
|
43 |
+
if idx in self.out_indices:
|
44 |
+
outs.append(
|
45 |
+
x[:, 1:, :].permute(0, 2, 1).reshape(
|
46 |
+
B, -1, H, W).contiguous()
|
47 |
+
)
|
48 |
+
return outs, cache
|
49 |
+
|
50 |
+
def process_cache(self,ret,cache):
|
51 |
+
cache = F.interpolate(
|
52 |
+
cache,size=(ret.shape[-2],ret.shape[-1]),mode="bilinear",align_corners=False)
|
53 |
+
return cache
|
54 |
+
|
55 |
+
def forward(self, *args, **kwargs):
|
56 |
+
ret, cache = self.forward_features(*args, **kwargs)
|
57 |
+
if isinstance(ret[0], torch.Tensor):
|
58 |
+
ret[0] = F.interpolate(
|
59 |
+
ret[0], scale_factor=4, mode="bilinear", align_corners=False
|
60 |
+
)
|
61 |
+
ret[1] = F.interpolate(
|
62 |
+
ret[1], scale_factor=2, mode="bilinear", align_corners=False
|
63 |
+
)
|
64 |
+
ret[3] = F.interpolate(
|
65 |
+
ret[3], scale_factor=0.5, mode="bilinear", align_corners=False
|
66 |
+
)
|
67 |
+
if self.has_cat:
|
68 |
+
if isinstance(cache,tuple) or isinstance(cache,list):
|
69 |
+
ret[0] = torch.cat((ret[0], cache[0]), dim=1)
|
70 |
+
ret[1] = torch.cat((ret[1], cache[1]), dim=1)
|
71 |
+
ret[2] = torch.cat((ret[2], cache[2]), dim=1)
|
72 |
+
ret[3] = torch.cat((ret[3], cache[3]), dim=1)
|
73 |
+
else:
|
74 |
+
ret[0] = torch.cat((ret[0], self.process_cache(ret[0],cache)), dim=1)
|
75 |
+
ret[1] = torch.cat((ret[1], self.process_cache(ret[1],cache)), dim=1)
|
76 |
+
ret[2] = torch.cat((ret[2], self.process_cache(ret[2],cache)), dim=1)
|
77 |
+
ret[3] = torch.cat((ret[3], self.process_cache(ret[3],cache)), dim=1)
|
78 |
+
# ret[0] = torch.cat(ret[0], cache[0], dim=1) # bs 1024 128 128, bs 256 128 128
|
79 |
+
else:
|
80 |
+
ret[0][0] = F.interpolate(
|
81 |
+
ret[0][0], scale_factor=4, mode="bilinear", align_corners=False
|
82 |
+
)
|
83 |
+
ret[0][1] = F.interpolate(
|
84 |
+
ret[0][1], scale_factor=2, mode="bilinear", align_corners=False
|
85 |
+
)
|
86 |
+
ret[0][3] = F.interpolate(
|
87 |
+
ret[0][3], scale_factor=0.5, mode="bilinear", align_corners=False
|
88 |
+
)
|
89 |
+
if self.has_cat:
|
90 |
+
if isinstance(cache,tuple) or isinstance(cache,list):
|
91 |
+
ret[0][0] = torch.cat((ret[0][0], cache[0]), dim=1)
|
92 |
+
ret[0][1] = torch.cat((ret[0][1], cache[1]), dim=1)
|
93 |
+
ret[0][2] = torch.cat((ret[0][2], cache[2]), dim=1)
|
94 |
+
ret[0][3] = torch.cat((ret[0][3], cache[3]), dim=1)
|
95 |
+
else:
|
96 |
+
ret[0][0] = torch.cat((ret[0][0], self.process_cache(ret[0][0],cache)), dim=1)
|
97 |
+
ret[0][1] = torch.cat((ret[0][1], self.process_cache(ret[0][1],cache)), dim=1)
|
98 |
+
ret[0][2] = torch.cat((ret[0][2], self.process_cache(ret[0][2],cache)), dim=1)
|
99 |
+
ret[0][3] = torch.cat((ret[0][3], self.process_cache(ret[0][3],cache)), dim=1)
|
100 |
+
return ret
|
101 |
+
|
102 |
+
def train(self, mode: bool = True):
|
103 |
+
if not mode:
|
104 |
+
return super().train(mode)
|
105 |
+
set_requires_grad(self, ["cloud_adapter"])
|
106 |
+
set_train(self, ["cloud_adapter"])
|
107 |
+
|
108 |
+
def state_dict(self, destination, prefix, keep_vars):
|
109 |
+
state = super().state_dict(destination, prefix, keep_vars)
|
110 |
+
keys = [k for k in state.keys() if "cloud_adapter" not in k]
|
111 |
+
for key in keys:
|
112 |
+
state.pop(key)
|
113 |
+
if key in destination:
|
114 |
+
destination.pop(key)
|
115 |
+
return state
|
cloud_adapter/dbnet.py
ADDED
@@ -0,0 +1,680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2024/7/26 上午11:19
|
3 |
+
# @Author : xiaoshun
|
4 |
+
# @Email : 3038523973@qq.com
|
5 |
+
# @File : dbnet.py
|
6 |
+
# @Software: PyCharm
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
|
14 |
+
# from models.Transformer.ViT import truncated_normal_
|
15 |
+
|
16 |
+
# Decoder细化卷积模块
|
17 |
+
class SBR(nn.Module):
|
18 |
+
def __init__(self, in_ch):
|
19 |
+
super(SBR, self).__init__()
|
20 |
+
self.conv1x3 = nn.Sequential(
|
21 |
+
nn.Conv2d(in_ch, in_ch, kernel_size=(1, 3), stride=1, padding=(0, 1)),
|
22 |
+
nn.BatchNorm2d(in_ch),
|
23 |
+
nn.ReLU(True)
|
24 |
+
)
|
25 |
+
self.conv3x1 = nn.Sequential(
|
26 |
+
nn.Conv2d(in_ch, in_ch, kernel_size=(3, 1), stride=1, padding=(1, 0)),
|
27 |
+
nn.BatchNorm2d(in_ch),
|
28 |
+
nn.ReLU(True)
|
29 |
+
)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
out = self.conv3x1(self.conv1x3(x)) # 先进行1x3的卷积,得到结果并将结果再进行3x1的卷积
|
33 |
+
return out + x
|
34 |
+
|
35 |
+
|
36 |
+
# 下采样卷积模块 stage 1,2,3
|
37 |
+
class c_stage123(nn.Module):
|
38 |
+
def __init__(self, in_chans, out_chans):
|
39 |
+
super().__init__()
|
40 |
+
self.stage123 = nn.Sequential(
|
41 |
+
nn.Conv2d(in_channels=in_chans, out_channels=out_chans, kernel_size=3, stride=2, padding=1),
|
42 |
+
nn.BatchNorm2d(out_chans),
|
43 |
+
nn.ReLU(),
|
44 |
+
nn.Conv2d(in_channels=out_chans, out_channels=out_chans, kernel_size=3, stride=1, padding=1),
|
45 |
+
nn.BatchNorm2d(out_chans),
|
46 |
+
nn.ReLU(),
|
47 |
+
)
|
48 |
+
self.conv1x1_123 = nn.Conv2d(in_channels=in_chans, out_channels=out_chans, kernel_size=1)
|
49 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
stage123 = self.stage123(x) # 3*3卷积,两倍下采样 3*224*224-->64*112*112
|
53 |
+
max = self.maxpool(x) # 最大值池化,两倍下采样 3*224*224-->3*112*112
|
54 |
+
max = self.conv1x1_123(max) # 1*1卷积 3*112*112-->64*112*112
|
55 |
+
stage123 = stage123 + max # 残差结构,广播机制
|
56 |
+
return stage123
|
57 |
+
|
58 |
+
|
59 |
+
# 下采样卷积模块 stage4,5
|
60 |
+
class c_stage45(nn.Module):
|
61 |
+
def __init__(self, in_chans, out_chans):
|
62 |
+
super().__init__()
|
63 |
+
self.stage45 = nn.Sequential(
|
64 |
+
nn.Conv2d(in_channels=in_chans, out_channels=out_chans, kernel_size=3, stride=2, padding=1),
|
65 |
+
nn.BatchNorm2d(out_chans),
|
66 |
+
nn.ReLU(),
|
67 |
+
nn.Conv2d(in_channels=out_chans, out_channels=out_chans, kernel_size=3, stride=1, padding=1),
|
68 |
+
nn.BatchNorm2d(out_chans),
|
69 |
+
nn.ReLU(),
|
70 |
+
nn.Conv2d(in_channels=out_chans, out_channels=out_chans, kernel_size=3, stride=1, padding=1),
|
71 |
+
nn.BatchNorm2d(out_chans),
|
72 |
+
nn.ReLU(),
|
73 |
+
)
|
74 |
+
self.conv1x1_45 = nn.Conv2d(in_channels=in_chans, out_channels=out_chans, kernel_size=1)
|
75 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
stage45 = self.stage45(x) # 3*3卷积模块 2倍下采样
|
79 |
+
max = self.maxpool(x) # 最大值池化,两倍下采样
|
80 |
+
max = self.conv1x1_45(max) # 1*1卷积模块 调整通道数
|
81 |
+
stage45 = stage45 + max # 残差结构
|
82 |
+
return stage45
|
83 |
+
|
84 |
+
|
85 |
+
class Identity(nn.Module): # 恒等映射
|
86 |
+
def __init__(self):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
# 轻量卷积模块
|
94 |
+
class DepthwiseConv2d(nn.Module): # 用于自注意力机制
|
95 |
+
def __init__(self, in_chans, out_chans, kernel_size=1, stride=1, padding=0, dilation=1):
|
96 |
+
super().__init__()
|
97 |
+
# depthwise conv
|
98 |
+
self.depthwise = nn.Conv2d(
|
99 |
+
in_channels=in_chans,
|
100 |
+
out_channels=in_chans,
|
101 |
+
kernel_size=kernel_size,
|
102 |
+
stride=stride,
|
103 |
+
padding=padding,
|
104 |
+
dilation=dilation, # 深层卷积的膨胀率
|
105 |
+
groups=in_chans # 指定分组卷积的组数
|
106 |
+
)
|
107 |
+
# batch norm
|
108 |
+
self.bn = nn.BatchNorm2d(num_features=in_chans)
|
109 |
+
|
110 |
+
# pointwise conv 逐点卷积
|
111 |
+
self.pointwise = nn.Conv2d(
|
112 |
+
in_channels=in_chans,
|
113 |
+
out_channels=out_chans,
|
114 |
+
kernel_size=1
|
115 |
+
)
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
x = self.depthwise(x)
|
119 |
+
x = self.bn(x)
|
120 |
+
x = self.pointwise(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
# residual skip connection 残差跳跃连接
|
125 |
+
class Residual(nn.Module):
|
126 |
+
def __init__(self, fn):
|
127 |
+
super().__init__()
|
128 |
+
self.fn = fn
|
129 |
+
|
130 |
+
def forward(self, input, **kwargs):
|
131 |
+
x = self.fn(input, **kwargs)
|
132 |
+
return (x + input)
|
133 |
+
|
134 |
+
|
135 |
+
# layer norm plus 层归一化
|
136 |
+
class PreNorm(nn.Module): # 代表神经网络层
|
137 |
+
def __init__(self, dim, fn):
|
138 |
+
super().__init__()
|
139 |
+
self.norm = nn.LayerNorm(dim)
|
140 |
+
self.fn = fn
|
141 |
+
|
142 |
+
def forward(self, input, **kwargs):
|
143 |
+
return self.fn(self.norm(input), **kwargs)
|
144 |
+
|
145 |
+
|
146 |
+
# FeedForward层使得representation的表达能力更强
|
147 |
+
class FeedForward(nn.Module):
|
148 |
+
def __init__(self, dim, hidden_dim, dropout=0.):
|
149 |
+
super().__init__()
|
150 |
+
self.net = nn.Sequential(
|
151 |
+
nn.Linear(in_features=dim, out_features=hidden_dim),
|
152 |
+
nn.GELU(),
|
153 |
+
nn.Dropout(dropout),
|
154 |
+
nn.Linear(in_features=hidden_dim, out_features=dim),
|
155 |
+
nn.Dropout(dropout)
|
156 |
+
)
|
157 |
+
|
158 |
+
def forward(self, input):
|
159 |
+
return self.net(input)
|
160 |
+
|
161 |
+
|
162 |
+
class ConvAttnetion(nn.Module):
|
163 |
+
'''
|
164 |
+
using the Depth_Separable_Wise Conv2d to produce the q, k, v instead of using Linear Project in ViT
|
165 |
+
'''
|
166 |
+
|
167 |
+
def __init__(self, dim, img_size, heads=8, dim_head=64, kernel_size=3, q_stride=1, k_stride=1, v_stride=1,
|
168 |
+
dropout=0., last_stage=False):
|
169 |
+
super().__init__()
|
170 |
+
self.last_stage = last_stage
|
171 |
+
self.img_size = img_size
|
172 |
+
inner_dim = dim_head * heads # 512
|
173 |
+
project_out = not (heads == 1 and dim_head == dim)
|
174 |
+
|
175 |
+
self.heads = heads
|
176 |
+
self.scale = dim_head ** (-0.5)
|
177 |
+
|
178 |
+
pad = (kernel_size - q_stride) // 2
|
179 |
+
|
180 |
+
self.to_q = DepthwiseConv2d(in_chans=dim, out_chans=inner_dim, kernel_size=kernel_size, stride=q_stride,
|
181 |
+
padding=pad) # 自注意力机制
|
182 |
+
self.to_k = DepthwiseConv2d(in_chans=dim, out_chans=inner_dim, kernel_size=kernel_size, stride=k_stride,
|
183 |
+
padding=pad)
|
184 |
+
self.to_v = DepthwiseConv2d(in_chans=dim, out_chans=inner_dim, kernel_size=kernel_size, stride=v_stride,
|
185 |
+
padding=pad)
|
186 |
+
|
187 |
+
self.to_out = nn.Sequential(
|
188 |
+
nn.Linear(
|
189 |
+
in_features=inner_dim,
|
190 |
+
out_features=dim
|
191 |
+
),
|
192 |
+
nn.Dropout(dropout)
|
193 |
+
) if project_out else Identity()
|
194 |
+
|
195 |
+
def forward(self, x):
|
196 |
+
b, n, c, h = *x.shape, self.heads # * 星号的作用大概是去掉 tuple 属性吧
|
197 |
+
|
198 |
+
# print(x.shape)
|
199 |
+
# print('+++++++++++++++++++++++++++++++++')
|
200 |
+
|
201 |
+
# if语句内容没有使用
|
202 |
+
if self.last_stage:
|
203 |
+
cls_token = x[:, 0]
|
204 |
+
# print(cls_token.shape)
|
205 |
+
# print('+++++++++++++++++++++++++++++++++')
|
206 |
+
x = x[:, 1:] # 去掉每个数组的第一个元素
|
207 |
+
|
208 |
+
cls_token = rearrange(torch.unsqueeze(cls_token, dim=1), 'b n (h d) -> b h n d', h=h)
|
209 |
+
|
210 |
+
# rearrange:用于对张量的维度进行重新变换排序,可用于替换pytorch中的reshape,view,transpose和permute等操作
|
211 |
+
x = rearrange(x, 'b (l w) n -> b n l w', l=self.img_size, w=self.img_size) # [1, 3136, 64]-->1*64*56*56
|
212 |
+
# batch_size,N(通道数),h,w
|
213 |
+
|
214 |
+
q = self.to_q(x) # 1*64*56*56-->1*64*56*56
|
215 |
+
# print(q.shape)
|
216 |
+
# print('++++++++++++++')
|
217 |
+
q = rearrange(q, 'b (h d) l w -> b h (l w) d', h=h) # 1*64*56*56-->1*1*3136*64
|
218 |
+
# print(q.shape)
|
219 |
+
# print('=====================')
|
220 |
+
# batch_size,head,h*w,dim_head
|
221 |
+
|
222 |
+
k = self.to_k(x) # 操作和q一样
|
223 |
+
k = rearrange(k, 'b (h d) l w -> b h (l w) d', h=h)
|
224 |
+
# batch_size,head,h*w,dim_head
|
225 |
+
|
226 |
+
v = self.to_v(x) ##操作和q一样
|
227 |
+
# print(v.shape)
|
228 |
+
# print('[[[[[[[[[[[[[[[[[[[[[[[[[[[[')
|
229 |
+
v = rearrange(v, 'b (h d) l w -> b h (l w) d', h=h)
|
230 |
+
# print(v.shape)
|
231 |
+
# print(']]]]]]]]]]]]]]]]]]]]]]]]]]]')
|
232 |
+
# batch_size,head,h*w,dim_head
|
233 |
+
|
234 |
+
if self.last_stage:
|
235 |
+
# print(q.shape)
|
236 |
+
# print('================')
|
237 |
+
q = torch.cat([cls_token, q], dim=2)
|
238 |
+
# print(q.shape)
|
239 |
+
# print('++++++++++++++++++')
|
240 |
+
v = torch.cat([cls_token, v], dim=2)
|
241 |
+
k = torch.cat([cls_token, k], dim=2)
|
242 |
+
|
243 |
+
# calculate attention by matmul + scale
|
244 |
+
# permute:(batch_size,head,dim_head,h*w
|
245 |
+
# print(k.shape)
|
246 |
+
# print('++++++++++++++++++++')
|
247 |
+
k = k.permute(0, 1, 3, 2) # 1*1*3136*64-->1*1*64*3136
|
248 |
+
# print(k.shape)
|
249 |
+
# print('====================')
|
250 |
+
attention = (q.matmul(k)) # 1*1*3136*3136
|
251 |
+
# print(attention.shape)
|
252 |
+
# print('--------------------')
|
253 |
+
attention = attention * self.scale # 可以得到一个logit的向量,避免出现梯度下降和梯度爆炸
|
254 |
+
# print(attention.shape)
|
255 |
+
# print('####################')
|
256 |
+
# pass a softmax
|
257 |
+
attention = F.softmax(attention, dim=-1)
|
258 |
+
# print(attention.shape)
|
259 |
+
# print('********************')
|
260 |
+
|
261 |
+
# matmul v
|
262 |
+
# attention.matmul(v):(batch_size,head,h*w,dim_head)
|
263 |
+
# permute:(batch_size,h*w,head,dim_head)
|
264 |
+
out = (attention.matmul(v)).permute(0, 2, 1, 3).reshape(b, n,
|
265 |
+
c) # 1*3136*64 这些操作的目的是将注意力权重和值向量相乘后得到的结果进行重塑,得到一个形状为 (batch size, 序列长度, 值向量或矩阵的维度) 的张量
|
266 |
+
|
267 |
+
# linear project
|
268 |
+
out = self.to_out(out)
|
269 |
+
return out
|
270 |
+
|
271 |
+
|
272 |
+
# Reshape Layers
|
273 |
+
class Rearrange(nn.Module):
|
274 |
+
def __init__(self, string, h, w):
|
275 |
+
super().__init__()
|
276 |
+
self.string = string
|
277 |
+
self.h = h
|
278 |
+
self.w = w
|
279 |
+
|
280 |
+
def forward(self, input):
|
281 |
+
|
282 |
+
if self.string == 'b c h w -> b (h w) c':
|
283 |
+
N, C, H, W = input.shape
|
284 |
+
# print(input.shape)
|
285 |
+
x = torch.reshape(input, shape=(N, -1, self.h * self.w)).permute(0, 2, 1)
|
286 |
+
# print(x.shape)
|
287 |
+
# print('+++++++++++++++++++')
|
288 |
+
if self.string == 'b (h w) c -> b c h w':
|
289 |
+
N, _, C = input.shape
|
290 |
+
# print(input.shape)
|
291 |
+
x = torch.reshape(input, shape=(N, self.h, self.w, -1)).permute(0, 3, 1, 2)
|
292 |
+
# print(x.shape)
|
293 |
+
# print('=====================')
|
294 |
+
return x
|
295 |
+
|
296 |
+
|
297 |
+
# Transformer layers
|
298 |
+
class Transformer(nn.Module):
|
299 |
+
def __init__(self, dim, img_size, depth, heads, dim_head, mlp_dim, dropout=0., last_stage=False):
|
300 |
+
super().__init__()
|
301 |
+
self.layers = nn.ModuleList([ # 管理子模块,参数注册
|
302 |
+
nn.ModuleList([
|
303 |
+
PreNorm(dim=dim, fn=ConvAttnetion(dim, img_size, heads=heads, dim_head=dim_head, dropout=dropout,
|
304 |
+
last_stage=last_stage)), # 归一化,重参数化
|
305 |
+
PreNorm(dim=dim, fn=FeedForward(dim=dim, hidden_dim=mlp_dim, dropout=dropout))
|
306 |
+
]) for _ in range(depth)
|
307 |
+
])
|
308 |
+
|
309 |
+
def forward(self, x):
|
310 |
+
for attn, ff in self.layers:
|
311 |
+
x = x + attn(x)
|
312 |
+
x = x + ff(x)
|
313 |
+
return x
|
314 |
+
|
315 |
+
|
316 |
+
class DBNet(nn.Module): # 最主要的大函数
|
317 |
+
def __init__(self, img_size, in_channels, num_classes, dim=64, kernels=[7, 3, 3, 3], strides=[4, 2, 2, 2],
|
318 |
+
heads=[1, 3, 6, 6],
|
319 |
+
depth=[1, 2, 10, 10], pool='cls', dropout=0., emb_dropout=0., scale_dim=4, ):
|
320 |
+
super().__init__()
|
321 |
+
|
322 |
+
assert pool in ['cls', 'mean'], f'pool type must be either cls or mean pooling'
|
323 |
+
self.pool = pool
|
324 |
+
self.dim = dim
|
325 |
+
|
326 |
+
# stage1
|
327 |
+
# k:7 s:4 in: 1, 64, 56, 56 out: 1, 3136, 64
|
328 |
+
self.stage1_conv_embed = nn.Sequential(
|
329 |
+
nn.Conv2d( # 1*3*224*224-->[1, 64, 56, 56]
|
330 |
+
in_channels=in_channels,
|
331 |
+
out_channels=dim,
|
332 |
+
kernel_size=kernels[0],
|
333 |
+
stride=strides[0],
|
334 |
+
padding=2
|
335 |
+
),
|
336 |
+
Rearrange('b c h w -> b (h w) c', h=img_size // 4, w=img_size // 4), # [1, 64, 56, 56]-->[1, 3136, 64]
|
337 |
+
nn.LayerNorm(dim) # 对每个batch归一化
|
338 |
+
)
|
339 |
+
|
340 |
+
self.stage1_transformer = nn.Sequential(
|
341 |
+
Transformer( #
|
342 |
+
dim=dim,
|
343 |
+
img_size=img_size // 4,
|
344 |
+
depth=depth[0], # Transformer层中的编码器和解码器层数。
|
345 |
+
heads=heads[0],
|
346 |
+
dim_head=self.dim, # 它是每个注意力头的维度大小,通常是嵌入维度除以头数。
|
347 |
+
mlp_dim=dim * scale_dim, # mlp_dim:它是Transformer中前馈神经网络的隐藏层维度大小,通常是嵌入维度乘以一个缩放因子。
|
348 |
+
dropout=dropout,
|
349 |
+
# last_stage=last_stage #它是一个标志位,用于表示该Transformer层是否是最后一层。
|
350 |
+
),
|
351 |
+
Rearrange('b (h w) c -> b c h w', h=img_size // 4, w=img_size // 4)
|
352 |
+
)
|
353 |
+
|
354 |
+
# stage2
|
355 |
+
# k:3 s:2 in: 1, 192, 28, 28 out: 1, 784, 192
|
356 |
+
in_channels = dim
|
357 |
+
scale = heads[1] // heads[0]
|
358 |
+
dim = scale * dim
|
359 |
+
|
360 |
+
self.stage2_conv_embed = nn.Sequential(
|
361 |
+
nn.Conv2d(
|
362 |
+
in_channels=in_channels,
|
363 |
+
out_channels=dim,
|
364 |
+
kernel_size=kernels[1],
|
365 |
+
stride=strides[1],
|
366 |
+
padding=1
|
367 |
+
),
|
368 |
+
Rearrange('b c h w -> b (h w) c', h=img_size // 8, w=img_size // 8),
|
369 |
+
nn.LayerNorm(dim)
|
370 |
+
)
|
371 |
+
|
372 |
+
self.stage2_transformer = nn.Sequential(
|
373 |
+
Transformer(
|
374 |
+
dim=dim,
|
375 |
+
img_size=img_size // 8,
|
376 |
+
depth=depth[1],
|
377 |
+
heads=heads[1],
|
378 |
+
dim_head=self.dim,
|
379 |
+
mlp_dim=dim * scale_dim,
|
380 |
+
dropout=dropout
|
381 |
+
),
|
382 |
+
Rearrange('b (h w) c -> b c h w', h=img_size // 8, w=img_size // 8)
|
383 |
+
)
|
384 |
+
|
385 |
+
# stage3
|
386 |
+
in_channels = dim
|
387 |
+
scale = heads[2] // heads[1]
|
388 |
+
dim = scale * dim
|
389 |
+
|
390 |
+
self.stage3_conv_embed = nn.Sequential(
|
391 |
+
nn.Conv2d(
|
392 |
+
in_channels=in_channels,
|
393 |
+
out_channels=dim,
|
394 |
+
kernel_size=kernels[2],
|
395 |
+
stride=strides[2],
|
396 |
+
padding=1
|
397 |
+
),
|
398 |
+
Rearrange('b c h w -> b (h w) c', h=img_size // 16, w=img_size // 16),
|
399 |
+
nn.LayerNorm(dim)
|
400 |
+
)
|
401 |
+
|
402 |
+
self.stage3_transformer = nn.Sequential(
|
403 |
+
Transformer(
|
404 |
+
dim=dim,
|
405 |
+
img_size=img_size // 16,
|
406 |
+
depth=depth[2],
|
407 |
+
heads=heads[2],
|
408 |
+
dim_head=self.dim,
|
409 |
+
mlp_dim=dim * scale_dim,
|
410 |
+
dropout=dropout
|
411 |
+
),
|
412 |
+
Rearrange('b (h w) c -> b c h w', h=img_size // 16, w=img_size // 16)
|
413 |
+
)
|
414 |
+
|
415 |
+
# stage4
|
416 |
+
in_channels = dim
|
417 |
+
scale = heads[3] // heads[2]
|
418 |
+
dim = scale * dim
|
419 |
+
|
420 |
+
self.stage4_conv_embed = nn.Sequential(
|
421 |
+
nn.Conv2d(
|
422 |
+
in_channels=in_channels,
|
423 |
+
out_channels=dim,
|
424 |
+
kernel_size=kernels[3],
|
425 |
+
stride=strides[3],
|
426 |
+
padding=1
|
427 |
+
),
|
428 |
+
Rearrange('b c h w -> b (h w) c', h=img_size // 32, w=img_size // 32),
|
429 |
+
nn.LayerNorm(dim)
|
430 |
+
)
|
431 |
+
|
432 |
+
self.stage4_transformer = nn.Sequential(
|
433 |
+
Transformer(
|
434 |
+
dim=dim, img_size=img_size // 32,
|
435 |
+
depth=depth[3],
|
436 |
+
heads=heads[3],
|
437 |
+
dim_head=self.dim,
|
438 |
+
mlp_dim=dim * scale_dim,
|
439 |
+
dropout=dropout,
|
440 |
+
),
|
441 |
+
Rearrange('b (h w) c -> b c h w', h=img_size // 32, w=img_size // 32)
|
442 |
+
)
|
443 |
+
|
444 |
+
### CNN Branch ###
|
445 |
+
self.c_stage1 = c_stage123(in_chans=3, out_chans=64)
|
446 |
+
self.c_stage2 = c_stage123(in_chans=64, out_chans=128)
|
447 |
+
self.c_stage3 = c_stage123(in_chans=128, out_chans=384)
|
448 |
+
self.c_stage4 = c_stage45(in_chans=384, out_chans=512)
|
449 |
+
self.c_stage5 = c_stage45(in_chans=512, out_chans=1024)
|
450 |
+
self.c_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
451 |
+
self.up_conv1 = nn.Conv2d(in_channels=192, out_channels=128, kernel_size=1)
|
452 |
+
self.up_conv2 = nn.Conv2d(in_channels=384, out_channels=512, kernel_size=1)
|
453 |
+
|
454 |
+
### CTmerge ###
|
455 |
+
self.CTmerge1 = nn.Sequential(
|
456 |
+
nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
|
457 |
+
nn.BatchNorm2d(64),
|
458 |
+
nn.ReLU(),
|
459 |
+
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
|
460 |
+
nn.BatchNorm2d(64),
|
461 |
+
nn.ReLU(),
|
462 |
+
)
|
463 |
+
self.CTmerge2 = nn.Sequential(
|
464 |
+
nn.Conv2d(in_channels=320, out_channels=128, kernel_size=3, stride=1, padding=1),
|
465 |
+
nn.BatchNorm2d(128),
|
466 |
+
nn.ReLU(),
|
467 |
+
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
|
468 |
+
nn.BatchNorm2d(128),
|
469 |
+
nn.ReLU(),
|
470 |
+
)
|
471 |
+
self.CTmerge3 = nn.Sequential(
|
472 |
+
nn.Conv2d(in_channels=768, out_channels=512, kernel_size=3, stride=1, padding=1),
|
473 |
+
nn.BatchNorm2d(512),
|
474 |
+
nn.ReLU(),
|
475 |
+
nn.Conv2d(in_channels=512, out_channels=384, kernel_size=3, stride=1, padding=1),
|
476 |
+
nn.BatchNorm2d(384),
|
477 |
+
nn.ReLU(),
|
478 |
+
nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding=1),
|
479 |
+
nn.BatchNorm2d(384),
|
480 |
+
nn.ReLU(),
|
481 |
+
)
|
482 |
+
|
483 |
+
self.CTmerge4 = nn.Sequential(
|
484 |
+
nn.Conv2d(in_channels=896, out_channels=640, kernel_size=3, stride=1, padding=1),
|
485 |
+
nn.BatchNorm2d(640),
|
486 |
+
nn.ReLU(),
|
487 |
+
nn.Conv2d(in_channels=640, out_channels=512, kernel_size=3, stride=1, padding=1),
|
488 |
+
nn.BatchNorm2d(512),
|
489 |
+
nn.ReLU(),
|
490 |
+
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
|
491 |
+
nn.BatchNorm2d(512),
|
492 |
+
nn.ReLU(),
|
493 |
+
)
|
494 |
+
|
495 |
+
# decoder
|
496 |
+
self.decoder4 = nn.Sequential(
|
497 |
+
DepthwiseConv2d(
|
498 |
+
in_chans=1408,
|
499 |
+
out_chans=1024,
|
500 |
+
kernel_size=3,
|
501 |
+
stride=1,
|
502 |
+
padding=1
|
503 |
+
),
|
504 |
+
DepthwiseConv2d(
|
505 |
+
in_chans=1024,
|
506 |
+
out_chans=512,
|
507 |
+
kernel_size=3,
|
508 |
+
stride=1,
|
509 |
+
padding=1
|
510 |
+
),
|
511 |
+
nn.GELU()
|
512 |
+
)
|
513 |
+
self.decoder3 = nn.Sequential(
|
514 |
+
DepthwiseConv2d(
|
515 |
+
in_chans=896,
|
516 |
+
out_chans=512,
|
517 |
+
kernel_size=3,
|
518 |
+
stride=1,
|
519 |
+
padding=1
|
520 |
+
),
|
521 |
+
DepthwiseConv2d(
|
522 |
+
in_chans=512,
|
523 |
+
out_chans=384,
|
524 |
+
kernel_size=3,
|
525 |
+
stride=1,
|
526 |
+
padding=1
|
527 |
+
),
|
528 |
+
nn.GELU()
|
529 |
+
)
|
530 |
+
|
531 |
+
self.decoder2 = nn.Sequential(
|
532 |
+
DepthwiseConv2d(
|
533 |
+
in_chans=576,
|
534 |
+
out_chans=256,
|
535 |
+
kernel_size=3,
|
536 |
+
stride=1,
|
537 |
+
padding=1
|
538 |
+
),
|
539 |
+
DepthwiseConv2d(
|
540 |
+
in_chans=256,
|
541 |
+
out_chans=192,
|
542 |
+
kernel_size=3,
|
543 |
+
stride=1,
|
544 |
+
padding=1
|
545 |
+
),
|
546 |
+
nn.GELU()
|
547 |
+
)
|
548 |
+
|
549 |
+
self.decoder1 = nn.Sequential(
|
550 |
+
DepthwiseConv2d(
|
551 |
+
in_chans=256,
|
552 |
+
out_chans=64,
|
553 |
+
kernel_size=3,
|
554 |
+
stride=1,
|
555 |
+
padding=1
|
556 |
+
),
|
557 |
+
DepthwiseConv2d(
|
558 |
+
in_chans=64,
|
559 |
+
out_chans=16,
|
560 |
+
kernel_size=3,
|
561 |
+
stride=1,
|
562 |
+
padding=1
|
563 |
+
),
|
564 |
+
nn.GELU()
|
565 |
+
)
|
566 |
+
self.sbr4 = SBR(512)
|
567 |
+
self.sbr3 = SBR(384)
|
568 |
+
self.sbr2 = SBR(192)
|
569 |
+
self.sbr1 = SBR(16)
|
570 |
+
|
571 |
+
self.head = nn.Conv2d(in_channels=16, out_channels=num_classes, kernel_size=1)
|
572 |
+
|
573 |
+
def forward(self, input):
|
574 |
+
### encoder ###
|
575 |
+
# stage1 = ts1 cat cs1
|
576 |
+
# t_s1 = self.t_stage1(input)
|
577 |
+
# print(input.shape)
|
578 |
+
# print('++++++++++++++++++++++')
|
579 |
+
|
580 |
+
t_s1 = self.stage1_conv_embed(input) # 1*3*224*224-->1*3136*64
|
581 |
+
|
582 |
+
# print(t_s1.shape)
|
583 |
+
# print('======================')
|
584 |
+
|
585 |
+
t_s1 = self.stage1_transformer(t_s1) # 1*3136*64-->1*64*56*56
|
586 |
+
|
587 |
+
# print(t_s1.shape)
|
588 |
+
# print('----------------------')
|
589 |
+
|
590 |
+
c_s1 = self.c_stage1(input) # 1*3*224*224-->1*64*112*112
|
591 |
+
|
592 |
+
# print(c_s1.shape)
|
593 |
+
# print('!!!!!!!!!!!!!!!!!!!!!!!')
|
594 |
+
|
595 |
+
stage1 = self.CTmerge1(torch.cat([t_s1, self.c_max(c_s1)], dim=1)) # 1*64*56*56 # 拼接两条分支
|
596 |
+
|
597 |
+
# print(stage1.shape)
|
598 |
+
# print('[[[[[[[[[[[[[[[[[[[[[[[')
|
599 |
+
|
600 |
+
# stage2 = ts2 up cs2
|
601 |
+
# t_s2 = self.t_stage2(stage1)
|
602 |
+
t_s2 = self.stage2_conv_embed(stage1) # 1*64*56*56-->1*784*192 # stage2_conv_embed是转化为序列操作
|
603 |
+
|
604 |
+
# print(t_s2.shape)
|
605 |
+
# print('[[[[[[[[[[[[[[[[[[[[[[[')
|
606 |
+
t_s2 = self.stage2_transformer(t_s2) # 1*784*192-->1*192*28*28
|
607 |
+
# print(t_s2.shape)
|
608 |
+
# print('+++++++++++++++++++++++++')
|
609 |
+
|
610 |
+
c_s2 = self.c_stage2(c_s1) # 1*64*112*112-->1*128*56*56
|
611 |
+
stage2 = self.CTmerge2(
|
612 |
+
torch.cat([c_s2, F.interpolate(t_s2, size=c_s2.size()[2:], mode='bilinear', align_corners=True)],
|
613 |
+
dim=1)) # mode='bilinear'表示使用双线性插值 1*128*56*56
|
614 |
+
|
615 |
+
# stage3 = ts3 cat cs3
|
616 |
+
# t_s3 = self.t_stage3(t_s2)
|
617 |
+
t_s3 = self.stage3_conv_embed(t_s2) # 1*192*28*28-->1*196*384
|
618 |
+
# print(t_s3.shape)
|
619 |
+
# print('///////////////////////')
|
620 |
+
t_s3 = self.stage3_transformer(t_s3) # 1*196*384-->1*384*14*14
|
621 |
+
# print(t_s3.shape)
|
622 |
+
# print('....................')
|
623 |
+
c_s3 = self.c_stage3(stage2) # 1*128*56*56-->1*384*28*28
|
624 |
+
stage3 = self.CTmerge3(torch.cat([t_s3, self.c_max(c_s3)], dim=1)) # 1*384*14*14
|
625 |
+
|
626 |
+
# stage4 = ts4 up cs4
|
627 |
+
# t_s4 = self.t_stage4(stage3)
|
628 |
+
t_s4 = self.stage4_conv_embed(stage3) # 1*384*14*14-->1*49*384
|
629 |
+
# print(t_s4.shape)
|
630 |
+
# print(';;;;;;;;;;;;;;;;;;;;;;;')
|
631 |
+
t_s4 = self.stage4_transformer(t_s4) # 1*49*384-->1*384*7*7
|
632 |
+
# print(t_s4.shape)
|
633 |
+
# print('::::::::::::::::::::')
|
634 |
+
|
635 |
+
c_s4 = self.c_stage4(c_s3) # 1*384*28*28-->1*512*14*14
|
636 |
+
stage4 = self.CTmerge4(
|
637 |
+
torch.cat([c_s4, F.interpolate(t_s4, size=c_s4.size()[2:], mode='bilinear', align_corners=True)],
|
638 |
+
dim=1)) # 1*512*14*14
|
639 |
+
|
640 |
+
# cs5
|
641 |
+
c_s5 = self.c_stage5(stage4) # 1*512*14*14-->1*1024*7*7
|
642 |
+
|
643 |
+
### decoder ###
|
644 |
+
decoder4 = torch.cat([c_s5, t_s4], dim=1) # 1*1408*7*7
|
645 |
+
decoder4 = self.decoder4(decoder4) # 1*1408*7*7-->1*512*7*7
|
646 |
+
decoder4 = F.interpolate(decoder4, size=c_s3.size()[2:], mode='bilinear',
|
647 |
+
align_corners=True) # 1*512*7*7-->1*512*28*28
|
648 |
+
decoder4 = self.sbr4(decoder4) # 1*512*28*28
|
649 |
+
# print(decoder4.shape)
|
650 |
+
|
651 |
+
decoder3 = torch.cat([decoder4, c_s3], dim=1) # 1*896*28*28
|
652 |
+
decoder3 = self.decoder3(decoder3) # 1*384*28*28
|
653 |
+
decoder3 = F.interpolate(decoder3, size=t_s2.size()[2:], mode='bilinear', align_corners=True) # 1*384*28*28
|
654 |
+
decoder3 = self.sbr3(decoder3) # 1*384*28*28
|
655 |
+
# print(decoder3.shape)
|
656 |
+
|
657 |
+
decoder2 = torch.cat([decoder3, t_s2], dim=1) # 1*576*28*28
|
658 |
+
decoder2 = self.decoder2(decoder2) # 1*192*28*28
|
659 |
+
decoder2 = F.interpolate(decoder2, size=c_s1.size()[2:], mode='bilinear', align_corners=True) # 1*192*112*112
|
660 |
+
decoder2 = self.sbr2(decoder2) # 1*192*112*112
|
661 |
+
# print(decoder2.shape)
|
662 |
+
|
663 |
+
decoder1 = torch.cat([decoder2, c_s1], dim=1) # 1*256*112*112
|
664 |
+
decoder1 = self.decoder1(decoder1) # 1*16*112*112
|
665 |
+
# print(decoder1.shape)
|
666 |
+
final = F.interpolate(decoder1, size=input.size()[2:], mode='bilinear', align_corners=True) # 1*16*224*224
|
667 |
+
# print(final.shape)
|
668 |
+
# final = self.sbr1(decoder1)
|
669 |
+
# print(final.shape)
|
670 |
+
final = self.head(final) # 1*3*224*224
|
671 |
+
|
672 |
+
return final
|
673 |
+
|
674 |
+
|
675 |
+
if __name__ == '__main__':
|
676 |
+
x = torch.rand(1, 3, 224, 224).cuda()
|
677 |
+
model = DBNet(img_size=224, in_channels=3, num_classes=7).cuda()
|
678 |
+
y = model(x)
|
679 |
+
print(y.shape)
|
680 |
+
# torch.Size([1, 7, 224, 224])
|
cloud_adapter/dino_layers/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from .dino_head import DINOHead
|
7 |
+
from .mlp import Mlp
|
8 |
+
from .patch_embed import PatchEmbed
|
9 |
+
from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
|
10 |
+
from .block import NestedTensorBlock,drop_add_residual_stochastic_depth
|
11 |
+
from .attention import MemEffAttention
|
cloud_adapter/dino_layers/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (502 Bytes). View file
|
|
cloud_adapter/dino_layers/__pycache__/attention.cpython-38.pyc
ADDED
Binary file (2.57 kB). View file
|
|
cloud_adapter/dino_layers/__pycache__/block.cpython-38.pyc
ADDED
Binary file (8.24 kB). View file
|
|
cloud_adapter/dino_layers/__pycache__/dino_head.cpython-38.pyc
ADDED
Binary file (1.97 kB). View file
|
|
cloud_adapter/dino_layers/__pycache__/drop_path.cpython-38.pyc
ADDED
Binary file (1.21 kB). View file
|
|
cloud_adapter/dino_layers/__pycache__/layer_scale.cpython-38.pyc
ADDED
Binary file (1.01 kB). View file
|
|
cloud_adapter/dino_layers/__pycache__/mlp.cpython-38.pyc
ADDED
Binary file (1.19 kB). View file
|
|
cloud_adapter/dino_layers/__pycache__/patch_embed.cpython-38.pyc
ADDED
Binary file (2.65 kB). View file
|
|
cloud_adapter/dino_layers/__pycache__/swiglu_ffn.cpython-38.pyc
ADDED
Binary file (2.18 kB). View file
|
|
cloud_adapter/dino_layers/attention.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
9 |
+
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
from torch import Tensor
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.getLogger("dinov2")
|
19 |
+
|
20 |
+
|
21 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
22 |
+
try:
|
23 |
+
if XFORMERS_ENABLED:
|
24 |
+
from xformers.ops import memory_efficient_attention, unbind
|
25 |
+
|
26 |
+
XFORMERS_AVAILABLE = True
|
27 |
+
warnings.warn("xFormers is available (Attention)")
|
28 |
+
else:
|
29 |
+
warnings.warn("xFormers is disabled (Attention)")
|
30 |
+
raise ImportError
|
31 |
+
except ImportError:
|
32 |
+
XFORMERS_AVAILABLE = False
|
33 |
+
warnings.warn("xFormers is not available (Attention)")
|
34 |
+
|
35 |
+
|
36 |
+
class Attention(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
dim: int,
|
40 |
+
num_heads: int = 8,
|
41 |
+
qkv_bias: bool = False,
|
42 |
+
proj_bias: bool = True,
|
43 |
+
attn_drop: float = 0.0,
|
44 |
+
proj_drop: float = 0.0,
|
45 |
+
) -> None:
|
46 |
+
super().__init__()
|
47 |
+
self.num_heads = num_heads
|
48 |
+
head_dim = dim // num_heads
|
49 |
+
self.scale = head_dim**-0.5
|
50 |
+
|
51 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
52 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
53 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
54 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
55 |
+
|
56 |
+
def forward(self, x: Tensor) -> Tensor:
|
57 |
+
B, N, C = x.shape
|
58 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
59 |
+
|
60 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
61 |
+
attn = q @ k.transpose(-2, -1)
|
62 |
+
|
63 |
+
attn = attn.softmax(dim=-1)
|
64 |
+
attn = self.attn_drop(attn)
|
65 |
+
|
66 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
67 |
+
x = self.proj(x)
|
68 |
+
x = self.proj_drop(x)
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
class MemEffAttention(Attention):
|
73 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
74 |
+
if not XFORMERS_AVAILABLE:
|
75 |
+
if attn_bias is not None:
|
76 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
77 |
+
return super().forward(x)
|
78 |
+
|
79 |
+
B, N, C = x.shape
|
80 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
81 |
+
|
82 |
+
q, k, v = unbind(qkv, 2)
|
83 |
+
|
84 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
85 |
+
x = x.reshape([B, N, C])
|
86 |
+
|
87 |
+
x = self.proj(x)
|
88 |
+
x = self.proj_drop(x)
|
89 |
+
return x
|
cloud_adapter/dino_layers/block.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
9 |
+
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
from typing import Callable, List, Any, Tuple, Dict
|
13 |
+
import warnings
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn, Tensor
|
17 |
+
|
18 |
+
from .attention import Attention, MemEffAttention
|
19 |
+
from .drop_path import DropPath
|
20 |
+
from .layer_scale import LayerScale
|
21 |
+
from .mlp import Mlp
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.getLogger("dinov2")
|
25 |
+
|
26 |
+
|
27 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
28 |
+
try:
|
29 |
+
if XFORMERS_ENABLED:
|
30 |
+
from xformers.ops import fmha, scaled_index_add, index_select_cat
|
31 |
+
|
32 |
+
XFORMERS_AVAILABLE = True
|
33 |
+
warnings.warn("xFormers is available (Block)")
|
34 |
+
else:
|
35 |
+
warnings.warn("xFormers is disabled (Block)")
|
36 |
+
raise ImportError
|
37 |
+
except ImportError:
|
38 |
+
XFORMERS_AVAILABLE = False
|
39 |
+
|
40 |
+
warnings.warn("xFormers is not available (Block)")
|
41 |
+
|
42 |
+
|
43 |
+
class Block(nn.Module):
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
dim: int,
|
47 |
+
num_heads: int,
|
48 |
+
mlp_ratio: float = 4.0,
|
49 |
+
qkv_bias: bool = False,
|
50 |
+
proj_bias: bool = True,
|
51 |
+
ffn_bias: bool = True,
|
52 |
+
drop: float = 0.0,
|
53 |
+
attn_drop: float = 0.0,
|
54 |
+
init_values=None,
|
55 |
+
drop_path: float = 0.0,
|
56 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
57 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
58 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
59 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
60 |
+
) -> None:
|
61 |
+
super().__init__()
|
62 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
63 |
+
self.norm1 = norm_layer(dim)
|
64 |
+
self.attn = attn_class(
|
65 |
+
dim,
|
66 |
+
num_heads=num_heads,
|
67 |
+
qkv_bias=qkv_bias,
|
68 |
+
proj_bias=proj_bias,
|
69 |
+
attn_drop=attn_drop,
|
70 |
+
proj_drop=drop,
|
71 |
+
)
|
72 |
+
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
73 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
74 |
+
|
75 |
+
self.norm2 = norm_layer(dim)
|
76 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
77 |
+
self.mlp = ffn_layer(
|
78 |
+
in_features=dim,
|
79 |
+
hidden_features=mlp_hidden_dim,
|
80 |
+
act_layer=act_layer,
|
81 |
+
drop=drop,
|
82 |
+
bias=ffn_bias,
|
83 |
+
)
|
84 |
+
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
85 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
86 |
+
|
87 |
+
self.sample_drop_ratio = drop_path
|
88 |
+
|
89 |
+
def forward(self, x: Tensor) -> Tensor:
|
90 |
+
def attn_residual_func(x: Tensor) -> Tensor:
|
91 |
+
return self.ls1(self.attn(self.norm1(x)))
|
92 |
+
|
93 |
+
def ffn_residual_func(x: Tensor) -> Tensor:
|
94 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
95 |
+
|
96 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
97 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
98 |
+
x = drop_add_residual_stochastic_depth(
|
99 |
+
x,
|
100 |
+
residual_func=attn_residual_func,
|
101 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
102 |
+
)
|
103 |
+
x = drop_add_residual_stochastic_depth(
|
104 |
+
x,
|
105 |
+
residual_func=ffn_residual_func,
|
106 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
107 |
+
)
|
108 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
109 |
+
x = x + self.drop_path1(attn_residual_func(x))
|
110 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
111 |
+
else:
|
112 |
+
x = x + attn_residual_func(x)
|
113 |
+
x = x + ffn_residual_func(x)
|
114 |
+
return x
|
115 |
+
|
116 |
+
|
117 |
+
def drop_add_residual_stochastic_depth(
|
118 |
+
x: Tensor,
|
119 |
+
residual_func: Callable[[Tensor], Tensor],
|
120 |
+
sample_drop_ratio: float = 0.0,
|
121 |
+
) -> Tensor:
|
122 |
+
# 1) extract subset using permutation
|
123 |
+
b, n, d = x.shape
|
124 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
125 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
126 |
+
x_subset = x[brange]
|
127 |
+
|
128 |
+
# 2) apply residual_func to get residual
|
129 |
+
residual = residual_func(x_subset)
|
130 |
+
|
131 |
+
x_flat = x.flatten(1)
|
132 |
+
residual = residual.flatten(1)
|
133 |
+
|
134 |
+
residual_scale_factor = b / sample_subset_size
|
135 |
+
|
136 |
+
# 3) add the residual
|
137 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
138 |
+
return x_plus_residual.view_as(x)
|
139 |
+
|
140 |
+
|
141 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
142 |
+
b, n, d = x.shape
|
143 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
144 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
145 |
+
residual_scale_factor = b / sample_subset_size
|
146 |
+
return brange, residual_scale_factor
|
147 |
+
|
148 |
+
|
149 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
150 |
+
if scaling_vector is None:
|
151 |
+
x_flat = x.flatten(1)
|
152 |
+
residual = residual.flatten(1)
|
153 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
154 |
+
else:
|
155 |
+
x_plus_residual = scaled_index_add(
|
156 |
+
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
157 |
+
)
|
158 |
+
return x_plus_residual
|
159 |
+
|
160 |
+
|
161 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
162 |
+
|
163 |
+
|
164 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
165 |
+
"""
|
166 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
167 |
+
"""
|
168 |
+
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
169 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
170 |
+
if all_shapes not in attn_bias_cache.keys():
|
171 |
+
seqlens = []
|
172 |
+
for b, x in zip(batch_sizes, x_list):
|
173 |
+
for _ in range(b):
|
174 |
+
seqlens.append(x.shape[1])
|
175 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
176 |
+
attn_bias._batch_sizes = batch_sizes
|
177 |
+
attn_bias_cache[all_shapes] = attn_bias
|
178 |
+
|
179 |
+
if branges is not None:
|
180 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
181 |
+
else:
|
182 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
183 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
184 |
+
|
185 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
186 |
+
|
187 |
+
|
188 |
+
def drop_add_residual_stochastic_depth_list(
|
189 |
+
x_list: List[Tensor],
|
190 |
+
residual_func: Callable[[Tensor, Any], Tensor],
|
191 |
+
sample_drop_ratio: float = 0.0,
|
192 |
+
scaling_vector=None,
|
193 |
+
) -> Tensor:
|
194 |
+
# 1) generate random set of indices for dropping samples in the batch
|
195 |
+
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
196 |
+
branges = [s[0] for s in branges_scales]
|
197 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
198 |
+
|
199 |
+
# 2) get attention bias and index+concat the tensors
|
200 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
201 |
+
|
202 |
+
# 3) apply residual_func to get residual, and split the result
|
203 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
204 |
+
|
205 |
+
outputs = []
|
206 |
+
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
207 |
+
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
208 |
+
return outputs
|
209 |
+
|
210 |
+
|
211 |
+
class NestedTensorBlock(Block):
|
212 |
+
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
|
213 |
+
"""
|
214 |
+
x_list contains a list of tensors to nest together and run
|
215 |
+
"""
|
216 |
+
assert isinstance(self.attn, MemEffAttention)
|
217 |
+
|
218 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
219 |
+
|
220 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
221 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
222 |
+
|
223 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
224 |
+
return self.mlp(self.norm2(x))
|
225 |
+
|
226 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
227 |
+
x_list,
|
228 |
+
residual_func=attn_residual_func,
|
229 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
230 |
+
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
|
231 |
+
)
|
232 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
233 |
+
x_list,
|
234 |
+
residual_func=ffn_residual_func,
|
235 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
236 |
+
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
|
237 |
+
)
|
238 |
+
return x_list
|
239 |
+
else:
|
240 |
+
|
241 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
242 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
243 |
+
|
244 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
245 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
246 |
+
|
247 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
248 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
249 |
+
x = x + ffn_residual_func(x)
|
250 |
+
return attn_bias.split(x)
|
251 |
+
|
252 |
+
def forward(self, x_or_x_list):
|
253 |
+
if isinstance(x_or_x_list, Tensor):
|
254 |
+
return super().forward(x_or_x_list)
|
255 |
+
elif isinstance(x_or_x_list, list):
|
256 |
+
if not XFORMERS_AVAILABLE:
|
257 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
258 |
+
return self.forward_nested(x_or_x_list)
|
259 |
+
else:
|
260 |
+
raise AssertionError
|
cloud_adapter/dino_layers/dino_head.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn.init import trunc_normal_
|
9 |
+
from torch.nn.utils import weight_norm
|
10 |
+
|
11 |
+
|
12 |
+
class DINOHead(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
in_dim,
|
16 |
+
out_dim,
|
17 |
+
use_bn=False,
|
18 |
+
nlayers=3,
|
19 |
+
hidden_dim=2048,
|
20 |
+
bottleneck_dim=256,
|
21 |
+
mlp_bias=True,
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
nlayers = max(nlayers, 1)
|
25 |
+
self.mlp = _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=hidden_dim, use_bn=use_bn, bias=mlp_bias)
|
26 |
+
self.apply(self._init_weights)
|
27 |
+
self.last_layer = weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
|
28 |
+
self.last_layer.weight_g.data.fill_(1)
|
29 |
+
|
30 |
+
def _init_weights(self, m):
|
31 |
+
if isinstance(m, nn.Linear):
|
32 |
+
trunc_normal_(m.weight, std=0.02)
|
33 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
34 |
+
nn.init.constant_(m.bias, 0)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
x = self.mlp(x)
|
38 |
+
eps = 1e-6 if x.dtype == torch.float16 else 1e-12
|
39 |
+
x = nn.functional.normalize(x, dim=-1, p=2, eps=eps)
|
40 |
+
x = self.last_layer(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
def _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=None, use_bn=False, bias=True):
|
45 |
+
if nlayers == 1:
|
46 |
+
return nn.Linear(in_dim, bottleneck_dim, bias=bias)
|
47 |
+
else:
|
48 |
+
layers = [nn.Linear(in_dim, hidden_dim, bias=bias)]
|
49 |
+
if use_bn:
|
50 |
+
layers.append(nn.BatchNorm1d(hidden_dim))
|
51 |
+
layers.append(nn.GELU())
|
52 |
+
for _ in range(nlayers - 2):
|
53 |
+
layers.append(nn.Linear(hidden_dim, hidden_dim, bias=bias))
|
54 |
+
if use_bn:
|
55 |
+
layers.append(nn.BatchNorm1d(hidden_dim))
|
56 |
+
layers.append(nn.GELU())
|
57 |
+
layers.append(nn.Linear(hidden_dim, bottleneck_dim, bias=bias))
|
58 |
+
return nn.Sequential(*layers)
|
cloud_adapter/dino_layers/drop_path.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
|
9 |
+
|
10 |
+
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
|
14 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
15 |
+
if drop_prob == 0.0 or not training:
|
16 |
+
return x
|
17 |
+
keep_prob = 1 - drop_prob
|
18 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
19 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
20 |
+
if keep_prob > 0.0:
|
21 |
+
random_tensor.div_(keep_prob)
|
22 |
+
output = x * random_tensor
|
23 |
+
return output
|
24 |
+
|
25 |
+
|
26 |
+
class DropPath(nn.Module):
|
27 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
28 |
+
|
29 |
+
def __init__(self, drop_prob=None):
|
30 |
+
super(DropPath, self).__init__()
|
31 |
+
self.drop_prob = drop_prob
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
return drop_path(x, self.drop_prob, self.training)
|
cloud_adapter/dino_layers/layer_scale.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
|
7 |
+
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import Tensor
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
|
15 |
+
class LayerScale(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
dim: int,
|
19 |
+
init_values: Union[float, Tensor] = 1e-5,
|
20 |
+
inplace: bool = False,
|
21 |
+
) -> None:
|
22 |
+
super().__init__()
|
23 |
+
self.inplace = inplace
|
24 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
25 |
+
|
26 |
+
def forward(self, x: Tensor) -> Tensor:
|
27 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
cloud_adapter/dino_layers/mlp.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
|
9 |
+
|
10 |
+
|
11 |
+
from typing import Callable, Optional
|
12 |
+
|
13 |
+
from torch import Tensor, nn
|
14 |
+
|
15 |
+
|
16 |
+
class Mlp(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
in_features: int,
|
20 |
+
hidden_features: Optional[int] = None,
|
21 |
+
out_features: Optional[int] = None,
|
22 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
23 |
+
drop: float = 0.0,
|
24 |
+
bias: bool = True,
|
25 |
+
) -> None:
|
26 |
+
super().__init__()
|
27 |
+
out_features = out_features or in_features
|
28 |
+
hidden_features = hidden_features or in_features
|
29 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
30 |
+
self.act = act_layer()
|
31 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
32 |
+
self.drop = nn.Dropout(drop)
|
33 |
+
|
34 |
+
def forward(self, x: Tensor) -> Tensor:
|
35 |
+
x = self.fc1(x)
|
36 |
+
x = self.act(x)
|
37 |
+
x = self.drop(x)
|
38 |
+
x = self.fc2(x)
|
39 |
+
x = self.drop(x)
|
40 |
+
return x
|
cloud_adapter/dino_layers/patch_embed.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
9 |
+
|
10 |
+
from typing import Callable, Optional, Tuple, Union
|
11 |
+
|
12 |
+
from torch import Tensor
|
13 |
+
import torch.nn as nn
|
14 |
+
|
15 |
+
|
16 |
+
def make_2tuple(x):
|
17 |
+
if isinstance(x, tuple):
|
18 |
+
assert len(x) == 2
|
19 |
+
return x
|
20 |
+
|
21 |
+
assert isinstance(x, int)
|
22 |
+
return (x, x)
|
23 |
+
|
24 |
+
|
25 |
+
class PatchEmbed(nn.Module):
|
26 |
+
"""
|
27 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
28 |
+
|
29 |
+
Args:
|
30 |
+
img_size: Image size.
|
31 |
+
patch_size: Patch token size.
|
32 |
+
in_chans: Number of input image channels.
|
33 |
+
embed_dim: Number of linear projection output channels.
|
34 |
+
norm_layer: Normalization layer.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
40 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
41 |
+
in_chans: int = 3,
|
42 |
+
embed_dim: int = 768,
|
43 |
+
norm_layer: Optional[Callable] = None,
|
44 |
+
flatten_embedding: bool = True,
|
45 |
+
) -> None:
|
46 |
+
super().__init__()
|
47 |
+
|
48 |
+
image_HW = make_2tuple(img_size)
|
49 |
+
patch_HW = make_2tuple(patch_size)
|
50 |
+
patch_grid_size = (
|
51 |
+
image_HW[0] // patch_HW[0],
|
52 |
+
image_HW[1] // patch_HW[1],
|
53 |
+
)
|
54 |
+
|
55 |
+
self.img_size = image_HW
|
56 |
+
self.patch_size = patch_HW
|
57 |
+
self.patches_resolution = patch_grid_size
|
58 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
59 |
+
|
60 |
+
self.in_chans = in_chans
|
61 |
+
self.embed_dim = embed_dim
|
62 |
+
|
63 |
+
self.flatten_embedding = flatten_embedding
|
64 |
+
|
65 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
66 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
67 |
+
|
68 |
+
def forward(self, x: Tensor) -> Tensor:
|
69 |
+
_, _, H, W = x.shape
|
70 |
+
patch_H, patch_W = self.patch_size
|
71 |
+
|
72 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
73 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
74 |
+
|
75 |
+
x = self.proj(x) # B C H W
|
76 |
+
H, W = x.size(2), x.size(3)
|
77 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
78 |
+
x = self.norm(x)
|
79 |
+
if not self.flatten_embedding:
|
80 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
81 |
+
return x
|
82 |
+
|
83 |
+
def flops(self) -> float:
|
84 |
+
Ho, Wo = self.patches_resolution
|
85 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
86 |
+
if self.norm is not None:
|
87 |
+
flops += Ho * Wo * self.embed_dim
|
88 |
+
return flops
|
cloud_adapter/dino_layers/swiglu_ffn.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import os
|
7 |
+
from typing import Callable, Optional
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
from torch import Tensor, nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
|
14 |
+
class SwiGLUFFN(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
in_features: int,
|
18 |
+
hidden_features: Optional[int] = None,
|
19 |
+
out_features: Optional[int] = None,
|
20 |
+
act_layer: Callable[..., nn.Module] = None,
|
21 |
+
drop: float = 0.0,
|
22 |
+
bias: bool = True,
|
23 |
+
) -> None:
|
24 |
+
super().__init__()
|
25 |
+
out_features = out_features or in_features
|
26 |
+
hidden_features = hidden_features or in_features
|
27 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
28 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
29 |
+
|
30 |
+
def forward(self, x: Tensor) -> Tensor:
|
31 |
+
x12 = self.w12(x)
|
32 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
33 |
+
hidden = F.silu(x1) * x2
|
34 |
+
return self.w3(hidden)
|
35 |
+
|
36 |
+
|
37 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
38 |
+
try:
|
39 |
+
if XFORMERS_ENABLED:
|
40 |
+
from xformers.ops import SwiGLU
|
41 |
+
|
42 |
+
XFORMERS_AVAILABLE = True
|
43 |
+
warnings.warn("xFormers is available (SwiGLU)")
|
44 |
+
else:
|
45 |
+
warnings.warn("xFormers is disabled (SwiGLU)")
|
46 |
+
raise ImportError
|
47 |
+
except ImportError:
|
48 |
+
SwiGLU = SwiGLUFFN
|
49 |
+
XFORMERS_AVAILABLE = False
|
50 |
+
|
51 |
+
warnings.warn("xFormers is not available (SwiGLU)")
|
52 |
+
|
53 |
+
|
54 |
+
class SwiGLUFFNFused(SwiGLU):
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
in_features: int,
|
58 |
+
hidden_features: Optional[int] = None,
|
59 |
+
out_features: Optional[int] = None,
|
60 |
+
act_layer: Callable[..., nn.Module] = None,
|
61 |
+
drop: float = 0.0,
|
62 |
+
bias: bool = True,
|
63 |
+
) -> None:
|
64 |
+
out_features = out_features or in_features
|
65 |
+
hidden_features = hidden_features or in_features
|
66 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
67 |
+
super().__init__(
|
68 |
+
in_features=in_features,
|
69 |
+
hidden_features=hidden_features,
|
70 |
+
out_features=out_features,
|
71 |
+
bias=bias,
|
72 |
+
)
|
cloud_adapter/dino_v2.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
9 |
+
|
10 |
+
from functools import partial
|
11 |
+
import math
|
12 |
+
from typing import Sequence, Tuple, Union, Callable
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.utils.checkpoint
|
17 |
+
from mmseg.models.builder import BACKBONES
|
18 |
+
from mmengine.model import BaseModule
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from .dino_layers import (
|
21 |
+
Mlp,
|
22 |
+
PatchEmbed,
|
23 |
+
SwiGLUFFNFused,
|
24 |
+
MemEffAttention,
|
25 |
+
NestedTensorBlock as Block,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
def named_apply(
|
30 |
+
fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False
|
31 |
+
) -> nn.Module:
|
32 |
+
if not depth_first and include_root:
|
33 |
+
fn(module=module, name=name)
|
34 |
+
for child_name, child_module in module.named_children():
|
35 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
36 |
+
named_apply(
|
37 |
+
fn=fn,
|
38 |
+
module=child_module,
|
39 |
+
name=child_name,
|
40 |
+
depth_first=depth_first,
|
41 |
+
include_root=True,
|
42 |
+
)
|
43 |
+
if depth_first and include_root:
|
44 |
+
fn(module=module, name=name)
|
45 |
+
return module
|
46 |
+
|
47 |
+
|
48 |
+
class BlockChunk(nn.ModuleList):
|
49 |
+
def forward(self, x):
|
50 |
+
for b in self:
|
51 |
+
x = b(x)
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
@BACKBONES.register_module()
|
56 |
+
class DinoVisionTransformer(BaseModule):
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
img_size=224,
|
60 |
+
patch_size=16,
|
61 |
+
in_chans=3,
|
62 |
+
embed_dim=768,
|
63 |
+
depth=12,
|
64 |
+
num_heads=12,
|
65 |
+
mlp_ratio=4.0,
|
66 |
+
qkv_bias=True,
|
67 |
+
ffn_bias=True,
|
68 |
+
proj_bias=True,
|
69 |
+
drop_path_rate=0.0,
|
70 |
+
drop_path_uniform=False,
|
71 |
+
init_values=None, # for layerscale: None or 0 => no layerscale
|
72 |
+
embed_layer=PatchEmbed,
|
73 |
+
act_layer=nn.GELU,
|
74 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
75 |
+
ffn_layer="mlp",
|
76 |
+
block_chunks=1,
|
77 |
+
out_indices=[7, 11, 15, 23],
|
78 |
+
init_cfg=None,
|
79 |
+
):
|
80 |
+
"""
|
81 |
+
Args:
|
82 |
+
img_size (int, tuple): input image size
|
83 |
+
patch_size (int, tuple): patch size
|
84 |
+
in_chans (int): number of input channels
|
85 |
+
embed_dim (int): embedding dimension
|
86 |
+
depth (int): depth of transformer
|
87 |
+
num_heads (int): number of attention heads
|
88 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
89 |
+
qkv_bias (bool): enable bias for qkv if True
|
90 |
+
proj_bias (bool): enable bias for proj in attn if True
|
91 |
+
ffn_bias (bool): enable bias for ffn if True
|
92 |
+
drop_path_rate (float): stochastic depth rate
|
93 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
94 |
+
weight_init (str): weight init scheme
|
95 |
+
init_values (float): layer-scale init values
|
96 |
+
embed_layer (nn.Module): patch embedding layer
|
97 |
+
act_layer (nn.Module): MLP activation layer
|
98 |
+
block_fn (nn.Module): transformer block class
|
99 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
100 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
101 |
+
"""
|
102 |
+
super().__init__(init_cfg)
|
103 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
104 |
+
self.out_indices = out_indices
|
105 |
+
self.drop_path_rate = drop_path_rate
|
106 |
+
self.num_features = (
|
107 |
+
self.embed_dim
|
108 |
+
) = embed_dim # num_features for consistency with other models
|
109 |
+
self.num_tokens = 1
|
110 |
+
self.n_blocks = depth
|
111 |
+
self.num_heads = num_heads
|
112 |
+
self.norm_layer = norm_layer
|
113 |
+
self.patch_size = patch_size
|
114 |
+
|
115 |
+
self.patch_embed = embed_layer(
|
116 |
+
img_size=img_size,
|
117 |
+
patch_size=patch_size,
|
118 |
+
in_chans=in_chans,
|
119 |
+
embed_dim=embed_dim,
|
120 |
+
)
|
121 |
+
num_patches = self.patch_embed.num_patches
|
122 |
+
|
123 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
124 |
+
self.pos_embed = nn.Parameter(
|
125 |
+
torch.zeros(1, num_patches + self.num_tokens, embed_dim)
|
126 |
+
)
|
127 |
+
|
128 |
+
if drop_path_uniform is True:
|
129 |
+
dpr = [drop_path_rate] * depth
|
130 |
+
else:
|
131 |
+
dpr = [
|
132 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
133 |
+
] # stochastic depth decay rule
|
134 |
+
|
135 |
+
if ffn_layer == "mlp":
|
136 |
+
ffn_layer = Mlp
|
137 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
138 |
+
ffn_layer = SwiGLUFFNFused
|
139 |
+
elif ffn_layer == "identity":
|
140 |
+
|
141 |
+
def f(*args, **kwargs):
|
142 |
+
return nn.Identity()
|
143 |
+
|
144 |
+
ffn_layer = f
|
145 |
+
else:
|
146 |
+
raise NotImplementedError
|
147 |
+
|
148 |
+
blocks_list = [
|
149 |
+
block_fn(
|
150 |
+
dim=embed_dim,
|
151 |
+
num_heads=num_heads,
|
152 |
+
mlp_ratio=mlp_ratio,
|
153 |
+
qkv_bias=qkv_bias,
|
154 |
+
proj_bias=proj_bias,
|
155 |
+
ffn_bias=ffn_bias,
|
156 |
+
drop_path=dpr[i],
|
157 |
+
norm_layer=norm_layer,
|
158 |
+
act_layer=act_layer,
|
159 |
+
ffn_layer=ffn_layer,
|
160 |
+
init_values=init_values,
|
161 |
+
)
|
162 |
+
for i in range(depth)
|
163 |
+
]
|
164 |
+
if block_chunks > 0:
|
165 |
+
self.chunked_blocks = True
|
166 |
+
chunked_blocks = []
|
167 |
+
chunksize = depth // block_chunks
|
168 |
+
for i in range(0, depth, chunksize):
|
169 |
+
# this is to keep the block index consistent if we chunk the block list
|
170 |
+
chunked_blocks.append(
|
171 |
+
[nn.Identity()] * i + blocks_list[i : i + chunksize]
|
172 |
+
)
|
173 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
174 |
+
else:
|
175 |
+
self.chunked_blocks = False
|
176 |
+
self.blocks = nn.ModuleList(blocks_list)
|
177 |
+
|
178 |
+
self.norm = norm_layer(embed_dim)
|
179 |
+
self.head = nn.Identity()
|
180 |
+
|
181 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
182 |
+
|
183 |
+
def interpolate_pos_encoding(self, x, w, h):
|
184 |
+
previous_dtype = x.dtype
|
185 |
+
npatch = x.shape[1] - 1
|
186 |
+
N = self.pos_embed.shape[1] - 1
|
187 |
+
if npatch == N and w == h:
|
188 |
+
return self.pos_embed
|
189 |
+
pos_embed = self.pos_embed.float()
|
190 |
+
class_pos_embed = pos_embed[:, 0]
|
191 |
+
patch_pos_embed = pos_embed[:, 1:]
|
192 |
+
dim = x.shape[-1]
|
193 |
+
w0 = w // self.patch_size
|
194 |
+
h0 = h // self.patch_size
|
195 |
+
# we add a small number to avoid floating point error in the interpolation
|
196 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
197 |
+
w0, h0 = w0 + 0.1, h0 + 0.1
|
198 |
+
|
199 |
+
patch_pos_embed = nn.functional.interpolate(
|
200 |
+
patch_pos_embed.reshape(
|
201 |
+
1, int(math.sqrt(N)), int(math.sqrt(N)), dim
|
202 |
+
).permute(0, 3, 1, 2),
|
203 |
+
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
|
204 |
+
mode="bicubic",
|
205 |
+
)
|
206 |
+
|
207 |
+
assert (
|
208 |
+
int(w0) == patch_pos_embed.shape[-2]
|
209 |
+
and int(h0) == patch_pos_embed.shape[-1]
|
210 |
+
)
|
211 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
212 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(
|
213 |
+
previous_dtype
|
214 |
+
)
|
215 |
+
|
216 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
217 |
+
B, nc, w, h = x.shape
|
218 |
+
x = self.patch_embed(x)
|
219 |
+
if masks is not None:
|
220 |
+
x = torch.where(
|
221 |
+
masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x
|
222 |
+
)
|
223 |
+
|
224 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
225 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
226 |
+
|
227 |
+
return x
|
228 |
+
|
229 |
+
def forward_features_list(self, x_list, masks_list):
|
230 |
+
x = [
|
231 |
+
self.prepare_tokens_with_masks(x, masks)
|
232 |
+
for x, masks in zip(x_list, masks_list)
|
233 |
+
]
|
234 |
+
for blk in self.blocks:
|
235 |
+
x = blk(x)
|
236 |
+
|
237 |
+
all_x = x
|
238 |
+
output = []
|
239 |
+
for x, masks in zip(all_x, masks_list):
|
240 |
+
x_norm = self.norm(x)
|
241 |
+
output.append(
|
242 |
+
{
|
243 |
+
"x_norm_clstoken": x_norm[:, 0],
|
244 |
+
"x_norm_patchtokens": x_norm[:, 1:],
|
245 |
+
"x_prenorm": x,
|
246 |
+
"masks": masks,
|
247 |
+
}
|
248 |
+
)
|
249 |
+
return output
|
250 |
+
|
251 |
+
def forward_features(self, x, masks=None):
|
252 |
+
B, _, h, w = x.shape
|
253 |
+
if isinstance(x, list):
|
254 |
+
return self.forward_features_list(x, masks)
|
255 |
+
|
256 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
257 |
+
outs = []
|
258 |
+
for idx, blk in enumerate(self.blocks):
|
259 |
+
x = blk(x)
|
260 |
+
if idx in self.out_indices:
|
261 |
+
outs.append(
|
262 |
+
x[:, 1:, :]
|
263 |
+
.permute(0, 2, 1)
|
264 |
+
.reshape(B, -1, h // self.patch_size, w // self.patch_size)
|
265 |
+
.contiguous()
|
266 |
+
)
|
267 |
+
return outs
|
268 |
+
|
269 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
270 |
+
x = self.prepare_tokens_with_masks(x)
|
271 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
272 |
+
output, total_block_len = [], len(self.blocks)
|
273 |
+
blocks_to_take = (
|
274 |
+
range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
275 |
+
)
|
276 |
+
for i, blk in enumerate(self.blocks):
|
277 |
+
x = blk(x)
|
278 |
+
if i in blocks_to_take:
|
279 |
+
output.append(x)
|
280 |
+
assert len(output) == len(
|
281 |
+
blocks_to_take
|
282 |
+
), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
283 |
+
return output
|
284 |
+
|
285 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
286 |
+
x = self.prepare_tokens_with_masks(x)
|
287 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
288 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
289 |
+
blocks_to_take = (
|
290 |
+
range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
291 |
+
)
|
292 |
+
for block_chunk in self.blocks:
|
293 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
294 |
+
x = blk(x)
|
295 |
+
if i in blocks_to_take:
|
296 |
+
output.append(x)
|
297 |
+
i += 1
|
298 |
+
assert len(output) == len(
|
299 |
+
blocks_to_take
|
300 |
+
), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
301 |
+
return output
|
302 |
+
|
303 |
+
def get_intermediate_layers(
|
304 |
+
self,
|
305 |
+
x: torch.Tensor,
|
306 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
307 |
+
reshape: bool = False,
|
308 |
+
return_class_token: bool = False,
|
309 |
+
norm=True,
|
310 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
311 |
+
if self.chunked_blocks:
|
312 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
313 |
+
else:
|
314 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
315 |
+
if norm:
|
316 |
+
outputs = [self.norm(out) for out in outputs]
|
317 |
+
class_tokens = [out[:, 0] for out in outputs]
|
318 |
+
outputs = [out[:, 1:] for out in outputs]
|
319 |
+
if reshape:
|
320 |
+
B, _, w, h = x.shape
|
321 |
+
outputs = [
|
322 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1)
|
323 |
+
.permute(0, 3, 1, 2)
|
324 |
+
.contiguous()
|
325 |
+
for out in outputs
|
326 |
+
]
|
327 |
+
if return_class_token:
|
328 |
+
return tuple(zip(outputs, class_tokens))
|
329 |
+
return tuple(outputs)
|
330 |
+
|
331 |
+
def forward(self, *args, **kwargs):
|
332 |
+
ret = self.forward_features(*args, **kwargs)
|
333 |
+
if isinstance(ret[0], torch.Tensor):
|
334 |
+
ret[0] = F.interpolate(
|
335 |
+
ret[0], scale_factor=4, mode="bilinear", align_corners=False
|
336 |
+
)
|
337 |
+
ret[1] = F.interpolate(
|
338 |
+
ret[1], scale_factor=2, mode="bilinear", align_corners=False
|
339 |
+
)
|
340 |
+
ret[3] = F.interpolate(
|
341 |
+
ret[3], scale_factor=0.5, mode="bilinear", align_corners=False
|
342 |
+
)
|
343 |
+
else:
|
344 |
+
ret[0][0] = F.interpolate(
|
345 |
+
ret[0][0], scale_factor=4, mode="bilinear", align_corners=False
|
346 |
+
)
|
347 |
+
ret[0][1] = F.interpolate(
|
348 |
+
ret[0][1], scale_factor=2, mode="bilinear", align_corners=False
|
349 |
+
)
|
350 |
+
ret[0][3] = F.interpolate(
|
351 |
+
ret[0][3], scale_factor=0.5, mode="bilinear", align_corners=False
|
352 |
+
)
|
353 |
+
return ret
|
cloud_adapter/hrcloudnet.py
ADDED
@@ -0,0 +1,751 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 论文地址:https://arxiv.org/abs/2407.07365
|
2 |
+
#
|
3 |
+
from __future__ import absolute_import
|
4 |
+
from __future__ import division
|
5 |
+
from __future__ import print_function
|
6 |
+
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch._utils
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
|
16 |
+
BatchNorm2d = nn.BatchNorm2d
|
17 |
+
# BN_MOMENTUM = 0.01
|
18 |
+
relu_inplace = True
|
19 |
+
BN_MOMENTUM = 0.1
|
20 |
+
ALIGN_CORNERS = True
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
26 |
+
"""3x3 convolution with padding"""
|
27 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
28 |
+
padding=1, bias=False)
|
29 |
+
|
30 |
+
|
31 |
+
from yacs.config import CfgNode as CN
|
32 |
+
import math
|
33 |
+
from einops import rearrange
|
34 |
+
|
35 |
+
# configs for HRNet48
|
36 |
+
HRNET_48 = CN()
|
37 |
+
HRNET_48.FINAL_CONV_KERNEL = 1
|
38 |
+
|
39 |
+
HRNET_48.STAGE1 = CN()
|
40 |
+
HRNET_48.STAGE1.NUM_MODULES = 1
|
41 |
+
HRNET_48.STAGE1.NUM_BRANCHES = 1
|
42 |
+
HRNET_48.STAGE1.NUM_BLOCKS = [4]
|
43 |
+
HRNET_48.STAGE1.NUM_CHANNELS = [64]
|
44 |
+
HRNET_48.STAGE1.BLOCK = 'BOTTLENECK'
|
45 |
+
HRNET_48.STAGE1.FUSE_METHOD = 'SUM'
|
46 |
+
|
47 |
+
HRNET_48.STAGE2 = CN()
|
48 |
+
HRNET_48.STAGE2.NUM_MODULES = 1
|
49 |
+
HRNET_48.STAGE2.NUM_BRANCHES = 2
|
50 |
+
HRNET_48.STAGE2.NUM_BLOCKS = [4, 4]
|
51 |
+
HRNET_48.STAGE2.NUM_CHANNELS = [48, 96]
|
52 |
+
HRNET_48.STAGE2.BLOCK = 'BASIC'
|
53 |
+
HRNET_48.STAGE2.FUSE_METHOD = 'SUM'
|
54 |
+
|
55 |
+
HRNET_48.STAGE3 = CN()
|
56 |
+
HRNET_48.STAGE3.NUM_MODULES = 4
|
57 |
+
HRNET_48.STAGE3.NUM_BRANCHES = 3
|
58 |
+
HRNET_48.STAGE3.NUM_BLOCKS = [4, 4, 4]
|
59 |
+
HRNET_48.STAGE3.NUM_CHANNELS = [48, 96, 192]
|
60 |
+
HRNET_48.STAGE3.BLOCK = 'BASIC'
|
61 |
+
HRNET_48.STAGE3.FUSE_METHOD = 'SUM'
|
62 |
+
|
63 |
+
HRNET_48.STAGE4 = CN()
|
64 |
+
HRNET_48.STAGE4.NUM_MODULES = 3
|
65 |
+
HRNET_48.STAGE4.NUM_BRANCHES = 4
|
66 |
+
HRNET_48.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
|
67 |
+
HRNET_48.STAGE4.NUM_CHANNELS = [48, 96, 192, 384]
|
68 |
+
HRNET_48.STAGE4.BLOCK = 'BASIC'
|
69 |
+
HRNET_48.STAGE4.FUSE_METHOD = 'SUM'
|
70 |
+
|
71 |
+
HRNET_32 = CN()
|
72 |
+
HRNET_32.FINAL_CONV_KERNEL = 1
|
73 |
+
|
74 |
+
HRNET_32.STAGE1 = CN()
|
75 |
+
HRNET_32.STAGE1.NUM_MODULES = 1
|
76 |
+
HRNET_32.STAGE1.NUM_BRANCHES = 1
|
77 |
+
HRNET_32.STAGE1.NUM_BLOCKS = [4]
|
78 |
+
HRNET_32.STAGE1.NUM_CHANNELS = [64]
|
79 |
+
HRNET_32.STAGE1.BLOCK = 'BOTTLENECK'
|
80 |
+
HRNET_32.STAGE1.FUSE_METHOD = 'SUM'
|
81 |
+
|
82 |
+
HRNET_32.STAGE2 = CN()
|
83 |
+
HRNET_32.STAGE2.NUM_MODULES = 1
|
84 |
+
HRNET_32.STAGE2.NUM_BRANCHES = 2
|
85 |
+
HRNET_32.STAGE2.NUM_BLOCKS = [4, 4]
|
86 |
+
HRNET_32.STAGE2.NUM_CHANNELS = [32, 64]
|
87 |
+
HRNET_32.STAGE2.BLOCK = 'BASIC'
|
88 |
+
HRNET_32.STAGE2.FUSE_METHOD = 'SUM'
|
89 |
+
|
90 |
+
HRNET_32.STAGE3 = CN()
|
91 |
+
HRNET_32.STAGE3.NUM_MODULES = 4
|
92 |
+
HRNET_32.STAGE3.NUM_BRANCHES = 3
|
93 |
+
HRNET_32.STAGE3.NUM_BLOCKS = [4, 4, 4]
|
94 |
+
HRNET_32.STAGE3.NUM_CHANNELS = [32, 64, 128]
|
95 |
+
HRNET_32.STAGE3.BLOCK = 'BASIC'
|
96 |
+
HRNET_32.STAGE3.FUSE_METHOD = 'SUM'
|
97 |
+
|
98 |
+
HRNET_32.STAGE4 = CN()
|
99 |
+
HRNET_32.STAGE4.NUM_MODULES = 3
|
100 |
+
HRNET_32.STAGE4.NUM_BRANCHES = 4
|
101 |
+
HRNET_32.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
|
102 |
+
HRNET_32.STAGE4.NUM_CHANNELS = [32, 64, 128, 256]
|
103 |
+
HRNET_32.STAGE4.BLOCK = 'BASIC'
|
104 |
+
HRNET_32.STAGE4.FUSE_METHOD = 'SUM'
|
105 |
+
|
106 |
+
HRNET_18 = CN()
|
107 |
+
HRNET_18.FINAL_CONV_KERNEL = 1
|
108 |
+
|
109 |
+
HRNET_18.STAGE1 = CN()
|
110 |
+
HRNET_18.STAGE1.NUM_MODULES = 1
|
111 |
+
HRNET_18.STAGE1.NUM_BRANCHES = 1
|
112 |
+
HRNET_18.STAGE1.NUM_BLOCKS = [4]
|
113 |
+
HRNET_18.STAGE1.NUM_CHANNELS = [64]
|
114 |
+
HRNET_18.STAGE1.BLOCK = 'BOTTLENECK'
|
115 |
+
HRNET_18.STAGE1.FUSE_METHOD = 'SUM'
|
116 |
+
|
117 |
+
HRNET_18.STAGE2 = CN()
|
118 |
+
HRNET_18.STAGE2.NUM_MODULES = 1
|
119 |
+
HRNET_18.STAGE2.NUM_BRANCHES = 2
|
120 |
+
HRNET_18.STAGE2.NUM_BLOCKS = [4, 4]
|
121 |
+
HRNET_18.STAGE2.NUM_CHANNELS = [18, 36]
|
122 |
+
HRNET_18.STAGE2.BLOCK = 'BASIC'
|
123 |
+
HRNET_18.STAGE2.FUSE_METHOD = 'SUM'
|
124 |
+
|
125 |
+
HRNET_18.STAGE3 = CN()
|
126 |
+
HRNET_18.STAGE3.NUM_MODULES = 4
|
127 |
+
HRNET_18.STAGE3.NUM_BRANCHES = 3
|
128 |
+
HRNET_18.STAGE3.NUM_BLOCKS = [4, 4, 4]
|
129 |
+
HRNET_18.STAGE3.NUM_CHANNELS = [18, 36, 72]
|
130 |
+
HRNET_18.STAGE3.BLOCK = 'BASIC'
|
131 |
+
HRNET_18.STAGE3.FUSE_METHOD = 'SUM'
|
132 |
+
|
133 |
+
HRNET_18.STAGE4 = CN()
|
134 |
+
HRNET_18.STAGE4.NUM_MODULES = 3
|
135 |
+
HRNET_18.STAGE4.NUM_BRANCHES = 4
|
136 |
+
HRNET_18.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
|
137 |
+
HRNET_18.STAGE4.NUM_CHANNELS = [18, 36, 72, 144]
|
138 |
+
HRNET_18.STAGE4.BLOCK = 'BASIC'
|
139 |
+
HRNET_18.STAGE4.FUSE_METHOD = 'SUM'
|
140 |
+
|
141 |
+
|
142 |
+
class PPM(nn.Module):
|
143 |
+
def __init__(self, in_dim, reduction_dim, bins):
|
144 |
+
super(PPM, self).__init__()
|
145 |
+
self.features = []
|
146 |
+
for bin in bins:
|
147 |
+
self.features.append(nn.Sequential(
|
148 |
+
nn.AdaptiveAvgPool2d(bin),
|
149 |
+
nn.Conv2d(in_dim, reduction_dim, kernel_size=1, bias=False),
|
150 |
+
nn.BatchNorm2d(reduction_dim),
|
151 |
+
nn.ReLU(inplace=True)
|
152 |
+
))
|
153 |
+
self.features = nn.ModuleList(self.features)
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
x_size = x.size()
|
157 |
+
out = [x]
|
158 |
+
for f in self.features:
|
159 |
+
out.append(F.interpolate(f(x), x_size[2:], mode='bilinear', align_corners=True))
|
160 |
+
return torch.cat(out, 1)
|
161 |
+
|
162 |
+
|
163 |
+
class BasicBlock(nn.Module):
|
164 |
+
expansion = 1
|
165 |
+
|
166 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
167 |
+
super(BasicBlock, self).__init__()
|
168 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
169 |
+
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
170 |
+
self.relu = nn.ReLU(inplace=relu_inplace)
|
171 |
+
self.conv2 = conv3x3(planes, planes)
|
172 |
+
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
173 |
+
self.downsample = downsample
|
174 |
+
self.stride = stride
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
residual = x
|
178 |
+
|
179 |
+
out = self.conv1(x)
|
180 |
+
out = self.bn1(out)
|
181 |
+
out = self.relu(out)
|
182 |
+
|
183 |
+
out = self.conv2(out)
|
184 |
+
out = self.bn2(out)
|
185 |
+
|
186 |
+
if self.downsample is not None:
|
187 |
+
residual = self.downsample(x)
|
188 |
+
out = out + residual
|
189 |
+
out = self.relu(out)
|
190 |
+
|
191 |
+
return out
|
192 |
+
|
193 |
+
|
194 |
+
class Bottleneck(nn.Module):
|
195 |
+
expansion = 4
|
196 |
+
|
197 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
198 |
+
super(Bottleneck, self).__init__()
|
199 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
200 |
+
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
201 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
202 |
+
padding=1, bias=False)
|
203 |
+
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
204 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
|
205 |
+
bias=False)
|
206 |
+
self.bn3 = BatchNorm2d(planes * self.expansion,
|
207 |
+
momentum=BN_MOMENTUM)
|
208 |
+
self.relu = nn.ReLU(inplace=relu_inplace)
|
209 |
+
self.downsample = downsample
|
210 |
+
self.stride = stride
|
211 |
+
|
212 |
+
def forward(self, x):
|
213 |
+
residual = x
|
214 |
+
|
215 |
+
out = self.conv1(x)
|
216 |
+
out = self.bn1(out)
|
217 |
+
out = self.relu(out)
|
218 |
+
|
219 |
+
out = self.conv2(out)
|
220 |
+
out = self.bn2(out)
|
221 |
+
out = self.relu(out)
|
222 |
+
|
223 |
+
out = self.conv3(out)
|
224 |
+
out = self.bn3(out)
|
225 |
+
|
226 |
+
if self.downsample is not None:
|
227 |
+
residual = self.downsample(x)
|
228 |
+
# att = self.downsample(att)
|
229 |
+
out = out + residual
|
230 |
+
out = self.relu(out)
|
231 |
+
|
232 |
+
return out
|
233 |
+
|
234 |
+
|
235 |
+
class HighResolutionModule(nn.Module):
|
236 |
+
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
|
237 |
+
num_channels, fuse_method, multi_scale_output=True):
|
238 |
+
super(HighResolutionModule, self).__init__()
|
239 |
+
self._check_branches(
|
240 |
+
num_branches, blocks, num_blocks, num_inchannels, num_channels)
|
241 |
+
|
242 |
+
self.num_inchannels = num_inchannels
|
243 |
+
self.fuse_method = fuse_method
|
244 |
+
self.num_branches = num_branches
|
245 |
+
|
246 |
+
self.multi_scale_output = multi_scale_output
|
247 |
+
|
248 |
+
self.branches = self._make_branches(
|
249 |
+
num_branches, blocks, num_blocks, num_channels)
|
250 |
+
self.fuse_layers = self._make_fuse_layers()
|
251 |
+
self.relu = nn.ReLU(inplace=relu_inplace)
|
252 |
+
|
253 |
+
def _check_branches(self, num_branches, blocks, num_blocks,
|
254 |
+
num_inchannels, num_channels):
|
255 |
+
if num_branches != len(num_blocks):
|
256 |
+
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
|
257 |
+
num_branches, len(num_blocks))
|
258 |
+
logger.error(error_msg)
|
259 |
+
raise ValueError(error_msg)
|
260 |
+
|
261 |
+
if num_branches != len(num_channels):
|
262 |
+
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
|
263 |
+
num_branches, len(num_channels))
|
264 |
+
logger.error(error_msg)
|
265 |
+
raise ValueError(error_msg)
|
266 |
+
|
267 |
+
if num_branches != len(num_inchannels):
|
268 |
+
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
|
269 |
+
num_branches, len(num_inchannels))
|
270 |
+
logger.error(error_msg)
|
271 |
+
raise ValueError(error_msg)
|
272 |
+
|
273 |
+
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
|
274 |
+
stride=1):
|
275 |
+
downsample = None
|
276 |
+
if stride != 1 or \
|
277 |
+
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
|
278 |
+
downsample = nn.Sequential(
|
279 |
+
nn.Conv2d(self.num_inchannels[branch_index],
|
280 |
+
num_channels[branch_index] * block.expansion,
|
281 |
+
kernel_size=1, stride=stride, bias=False),
|
282 |
+
BatchNorm2d(num_channels[branch_index] * block.expansion,
|
283 |
+
momentum=BN_MOMENTUM),
|
284 |
+
)
|
285 |
+
|
286 |
+
layers = []
|
287 |
+
layers.append(block(self.num_inchannels[branch_index],
|
288 |
+
num_channels[branch_index], stride, downsample))
|
289 |
+
self.num_inchannels[branch_index] = \
|
290 |
+
num_channels[branch_index] * block.expansion
|
291 |
+
for i in range(1, num_blocks[branch_index]):
|
292 |
+
layers.append(block(self.num_inchannels[branch_index],
|
293 |
+
num_channels[branch_index]))
|
294 |
+
|
295 |
+
return nn.Sequential(*layers)
|
296 |
+
|
297 |
+
# 创建平行层
|
298 |
+
def _make_branches(self, num_branches, block, num_blocks, num_channels):
|
299 |
+
branches = []
|
300 |
+
|
301 |
+
for i in range(num_branches):
|
302 |
+
branches.append(
|
303 |
+
self._make_one_branch(i, block, num_blocks, num_channels))
|
304 |
+
|
305 |
+
return nn.ModuleList(branches)
|
306 |
+
|
307 |
+
def _make_fuse_layers(self):
|
308 |
+
if self.num_branches == 1:
|
309 |
+
return None
|
310 |
+
num_branches = self.num_branches # 3
|
311 |
+
num_inchannels = self.num_inchannels # [48, 96, 192]
|
312 |
+
fuse_layers = []
|
313 |
+
for i in range(num_branches if self.multi_scale_output else 1):
|
314 |
+
fuse_layer = []
|
315 |
+
for j in range(num_branches):
|
316 |
+
if j > i:
|
317 |
+
fuse_layer.append(nn.Sequential(
|
318 |
+
nn.Conv2d(num_inchannels[j],
|
319 |
+
num_inchannels[i],
|
320 |
+
1,
|
321 |
+
1,
|
322 |
+
0,
|
323 |
+
bias=False),
|
324 |
+
BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM)))
|
325 |
+
elif j == i:
|
326 |
+
fuse_layer.append(None)
|
327 |
+
else:
|
328 |
+
conv3x3s = []
|
329 |
+
for k in range(i - j):
|
330 |
+
if k == i - j - 1:
|
331 |
+
num_outchannels_conv3x3 = num_inchannels[i]
|
332 |
+
conv3x3s.append(nn.Sequential(
|
333 |
+
nn.Conv2d(num_inchannels[j],
|
334 |
+
num_outchannels_conv3x3,
|
335 |
+
3, 2, 1, bias=False),
|
336 |
+
BatchNorm2d(num_outchannels_conv3x3,
|
337 |
+
momentum=BN_MOMENTUM)))
|
338 |
+
else:
|
339 |
+
num_outchannels_conv3x3 = num_inchannels[j]
|
340 |
+
conv3x3s.append(nn.Sequential(
|
341 |
+
nn.Conv2d(num_inchannels[j],
|
342 |
+
num_outchannels_conv3x3,
|
343 |
+
3, 2, 1, bias=False),
|
344 |
+
BatchNorm2d(num_outchannels_conv3x3,
|
345 |
+
momentum=BN_MOMENTUM),
|
346 |
+
nn.ReLU(inplace=relu_inplace)))
|
347 |
+
fuse_layer.append(nn.Sequential(*conv3x3s))
|
348 |
+
fuse_layers.append(nn.ModuleList(fuse_layer))
|
349 |
+
|
350 |
+
return nn.ModuleList(fuse_layers)
|
351 |
+
|
352 |
+
def get_num_inchannels(self):
|
353 |
+
return self.num_inchannels
|
354 |
+
|
355 |
+
def forward(self, x):
|
356 |
+
if self.num_branches == 1:
|
357 |
+
return [self.branches[0](x[0])]
|
358 |
+
|
359 |
+
for i in range(self.num_branches):
|
360 |
+
x[i] = self.branches[i](x[i])
|
361 |
+
|
362 |
+
x_fuse = []
|
363 |
+
for i in range(len(self.fuse_layers)):
|
364 |
+
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
|
365 |
+
for j in range(1, self.num_branches):
|
366 |
+
if i == j:
|
367 |
+
y = y + x[j]
|
368 |
+
elif j > i:
|
369 |
+
width_output = x[i].shape[-1]
|
370 |
+
height_output = x[i].shape[-2]
|
371 |
+
y = y + F.interpolate(
|
372 |
+
self.fuse_layers[i][j](x[j]),
|
373 |
+
size=[height_output, width_output],
|
374 |
+
mode='bilinear', align_corners=ALIGN_CORNERS)
|
375 |
+
else:
|
376 |
+
y = y + self.fuse_layers[i][j](x[j])
|
377 |
+
x_fuse.append(self.relu(y))
|
378 |
+
|
379 |
+
return x_fuse
|
380 |
+
|
381 |
+
|
382 |
+
blocks_dict = {
|
383 |
+
'BASIC': BasicBlock,
|
384 |
+
'BOTTLENECK': Bottleneck
|
385 |
+
}
|
386 |
+
|
387 |
+
|
388 |
+
class HRCloudNet(nn.Module):
|
389 |
+
|
390 |
+
def __init__(self, in_channels=3,num_classes=2, base_c=48, **kwargs):
|
391 |
+
global ALIGN_CORNERS
|
392 |
+
extra = HRNET_48
|
393 |
+
super(HRCloudNet, self).__init__()
|
394 |
+
ALIGN_CORNERS = True
|
395 |
+
# ALIGN_CORNERS = config.MODEL.ALIGN_CORNERS
|
396 |
+
self.num_classes = num_classes
|
397 |
+
# stem net
|
398 |
+
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1,
|
399 |
+
bias=False)
|
400 |
+
self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM)
|
401 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,
|
402 |
+
bias=False)
|
403 |
+
self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM)
|
404 |
+
self.relu = nn.ReLU(inplace=relu_inplace)
|
405 |
+
|
406 |
+
self.stage1_cfg = extra['STAGE1']
|
407 |
+
num_channels = self.stage1_cfg['NUM_CHANNELS'][0]
|
408 |
+
block = blocks_dict[self.stage1_cfg['BLOCK']]
|
409 |
+
num_blocks = self.stage1_cfg['NUM_BLOCKS'][0]
|
410 |
+
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)
|
411 |
+
stage1_out_channel = block.expansion * num_channels
|
412 |
+
|
413 |
+
self.stage2_cfg = extra['STAGE2']
|
414 |
+
num_channels = self.stage2_cfg['NUM_CHANNELS']
|
415 |
+
block = blocks_dict[self.stage2_cfg['BLOCK']]
|
416 |
+
num_channels = [
|
417 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))]
|
418 |
+
self.transition1 = self._make_transition_layer(
|
419 |
+
[stage1_out_channel], num_channels)
|
420 |
+
self.stage2, pre_stage_channels = self._make_stage(
|
421 |
+
self.stage2_cfg, num_channels)
|
422 |
+
|
423 |
+
self.stage3_cfg = extra['STAGE3']
|
424 |
+
num_channels = self.stage3_cfg['NUM_CHANNELS']
|
425 |
+
block = blocks_dict[self.stage3_cfg['BLOCK']]
|
426 |
+
num_channels = [
|
427 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))]
|
428 |
+
self.transition2 = self._make_transition_layer(
|
429 |
+
pre_stage_channels, num_channels) # 只在pre[-1]与cur[-1]之间下采样?
|
430 |
+
self.stage3, pre_stage_channels = self._make_stage(
|
431 |
+
self.stage3_cfg, num_channels)
|
432 |
+
|
433 |
+
self.stage4_cfg = extra['STAGE4']
|
434 |
+
num_channels = self.stage4_cfg['NUM_CHANNELS']
|
435 |
+
block = blocks_dict[self.stage4_cfg['BLOCK']]
|
436 |
+
num_channels = [
|
437 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))]
|
438 |
+
self.transition3 = self._make_transition_layer(
|
439 |
+
pre_stage_channels, num_channels)
|
440 |
+
self.stage4, pre_stage_channels = self._make_stage(
|
441 |
+
self.stage4_cfg, num_channels, multi_scale_output=True)
|
442 |
+
self.out_conv = OutConv(base_c, num_classes)
|
443 |
+
last_inp_channels = int(np.sum(pre_stage_channels))
|
444 |
+
|
445 |
+
self.corr = Corr(nclass=2)
|
446 |
+
self.proj = nn.Sequential(
|
447 |
+
# 512 32
|
448 |
+
nn.Conv2d(720, 48, kernel_size=3, stride=1, padding=1, bias=True),
|
449 |
+
nn.BatchNorm2d(48),
|
450 |
+
nn.ReLU(inplace=True),
|
451 |
+
nn.Dropout2d(0.1),
|
452 |
+
)
|
453 |
+
# self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear)
|
454 |
+
self.up2 = Up(base_c * 8, base_c * 4, True)
|
455 |
+
self.up3 = Up(base_c * 4, base_c * 2, True)
|
456 |
+
self.up4 = Up(base_c * 2, base_c, True)
|
457 |
+
fea_dim = 720
|
458 |
+
bins = (1, 2, 3, 6)
|
459 |
+
self.ppm = PPM(fea_dim, int(fea_dim / len(bins)), bins)
|
460 |
+
fea_dim *= 2
|
461 |
+
self.cls = nn.Sequential(
|
462 |
+
nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False),
|
463 |
+
nn.BatchNorm2d(512),
|
464 |
+
nn.ReLU(inplace=True),
|
465 |
+
nn.Dropout2d(p=0.1),
|
466 |
+
nn.Conv2d(512, num_classes, kernel_size=1)
|
467 |
+
)
|
468 |
+
|
469 |
+
'''
|
470 |
+
转换层的作用有两种情况:
|
471 |
+
|
472 |
+
当前分支数小于之前分支数时,仅对前几个分支进行通道数调整。
|
473 |
+
当前分支数大于之前分支数时,新建一些转换层,对多余的分支进行下采样,改变通道数以适应后续的连接。
|
474 |
+
最终,这些转换层会被组合成一个 nn.ModuleList 对象,并在网络的构建过程中使用。
|
475 |
+
这有助于确保每个分支的通道数在不同阶段之间能够正确匹配,以便进行特征的融合和连接
|
476 |
+
'''
|
477 |
+
|
478 |
+
def _make_transition_layer(
|
479 |
+
self, num_channels_pre_layer, num_channels_cur_layer):
|
480 |
+
# 现在的分支数
|
481 |
+
num_branches_cur = len(num_channels_cur_layer) # 3
|
482 |
+
# 处理前的分支数
|
483 |
+
num_branches_pre = len(num_channels_pre_layer) # 2
|
484 |
+
|
485 |
+
transition_layers = []
|
486 |
+
for i in range(num_branches_cur):
|
487 |
+
# 如果当前分支数小于之前分支数,仅针对第一到第二阶段
|
488 |
+
if i < num_branches_pre:
|
489 |
+
# 如果对应层的通道数不一致,则进行转化(
|
490 |
+
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
|
491 |
+
transition_layers.append(nn.Sequential(
|
492 |
+
|
493 |
+
nn.Conv2d(num_channels_pre_layer[i],
|
494 |
+
num_channels_cur_layer[i],
|
495 |
+
3,
|
496 |
+
1,
|
497 |
+
1,
|
498 |
+
bias=False),
|
499 |
+
BatchNorm2d(
|
500 |
+
num_channels_cur_layer[i], momentum=BN_MOMENTUM),
|
501 |
+
nn.ReLU(inplace=relu_inplace)))
|
502 |
+
else:
|
503 |
+
transition_layers.append(None)
|
504 |
+
else: # 在新建层下采样改变通道数
|
505 |
+
conv3x3s = []
|
506 |
+
for j in range(i + 1 - num_branches_pre): # 3
|
507 |
+
inchannels = num_channels_pre_layer[-1]
|
508 |
+
outchannels = num_channels_cur_layer[i] \
|
509 |
+
if j == i - num_branches_pre else inchannels
|
510 |
+
conv3x3s.append(nn.Sequential(
|
511 |
+
nn.Conv2d(
|
512 |
+
inchannels, outchannels, 3, 2, 1, bias=False),
|
513 |
+
BatchNorm2d(outchannels, momentum=BN_MOMENTUM),
|
514 |
+
nn.ReLU(inplace=relu_inplace)))
|
515 |
+
transition_layers.append(nn.Sequential(*conv3x3s))
|
516 |
+
|
517 |
+
return nn.ModuleList(transition_layers)
|
518 |
+
|
519 |
+
'''
|
520 |
+
_make_layer 函数的主要作用是创建一个由多个相同类型的残差块(Residual Block)组成的层。
|
521 |
+
'''
|
522 |
+
|
523 |
+
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
|
524 |
+
downsample = None
|
525 |
+
if stride != 1 or inplanes != planes * block.expansion:
|
526 |
+
downsample = nn.Sequential(
|
527 |
+
nn.Conv2d(inplanes, planes * block.expansion,
|
528 |
+
kernel_size=1, stride=stride, bias=False),
|
529 |
+
BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
|
530 |
+
)
|
531 |
+
|
532 |
+
layers = []
|
533 |
+
layers.append(block(inplanes, planes, stride, downsample))
|
534 |
+
inplanes = planes * block.expansion
|
535 |
+
for i in range(1, blocks):
|
536 |
+
layers.append(block(inplanes, planes))
|
537 |
+
|
538 |
+
return nn.Sequential(*layers)
|
539 |
+
|
540 |
+
# 多尺度融合
|
541 |
+
def _make_stage(self, layer_config, num_inchannels,
|
542 |
+
multi_scale_output=True):
|
543 |
+
num_modules = layer_config['NUM_MODULES']
|
544 |
+
num_branches = layer_config['NUM_BRANCHES']
|
545 |
+
num_blocks = layer_config['NUM_BLOCKS']
|
546 |
+
num_channels = layer_config['NUM_CHANNELS']
|
547 |
+
block = blocks_dict[layer_config['BLOCK']]
|
548 |
+
fuse_method = layer_config['FUSE_METHOD']
|
549 |
+
|
550 |
+
modules = []
|
551 |
+
for i in range(num_modules): # 重复4次
|
552 |
+
# multi_scale_output is only used last module
|
553 |
+
if not multi_scale_output and i == num_modules - 1:
|
554 |
+
reset_multi_scale_output = False
|
555 |
+
else:
|
556 |
+
reset_multi_scale_output = True
|
557 |
+
modules.append(
|
558 |
+
HighResolutionModule(num_branches,
|
559 |
+
block,
|
560 |
+
num_blocks,
|
561 |
+
num_inchannels,
|
562 |
+
num_channels,
|
563 |
+
fuse_method,
|
564 |
+
reset_multi_scale_output)
|
565 |
+
)
|
566 |
+
num_inchannels = modules[-1].get_num_inchannels()
|
567 |
+
|
568 |
+
return nn.Sequential(*modules), num_inchannels
|
569 |
+
|
570 |
+
def forward(self, input, need_fp=True, use_corr=True):
|
571 |
+
# from ipdb import set_trace
|
572 |
+
# set_trace()
|
573 |
+
x = self.conv1(input)
|
574 |
+
x = self.bn1(x)
|
575 |
+
x = self.relu(x)
|
576 |
+
# x_176 = x
|
577 |
+
x = self.conv2(x)
|
578 |
+
x = self.bn2(x)
|
579 |
+
x = self.relu(x)
|
580 |
+
x = self.layer1(x)
|
581 |
+
|
582 |
+
x_list = []
|
583 |
+
for i in range(self.stage2_cfg['NUM_BRANCHES']): # 2
|
584 |
+
if self.transition1[i] is not None:
|
585 |
+
x_list.append(self.transition1[i](x))
|
586 |
+
else:
|
587 |
+
x_list.append(x)
|
588 |
+
y_list = self.stage2(x_list)
|
589 |
+
# Y1
|
590 |
+
x_list = []
|
591 |
+
for i in range(self.stage3_cfg['NUM_BRANCHES']):
|
592 |
+
if self.transition2[i] is not None:
|
593 |
+
if i < self.stage2_cfg['NUM_BRANCHES']:
|
594 |
+
x_list.append(self.transition2[i](y_list[i]))
|
595 |
+
else:
|
596 |
+
x_list.append(self.transition2[i](y_list[-1]))
|
597 |
+
else:
|
598 |
+
x_list.append(y_list[i])
|
599 |
+
y_list = self.stage3(x_list)
|
600 |
+
|
601 |
+
x_list = []
|
602 |
+
for i in range(self.stage4_cfg['NUM_BRANCHES']):
|
603 |
+
if self.transition3[i] is not None:
|
604 |
+
if i < self.stage3_cfg['NUM_BRANCHES']:
|
605 |
+
x_list.append(self.transition3[i](y_list[i]))
|
606 |
+
else:
|
607 |
+
x_list.append(self.transition3[i](y_list[-1]))
|
608 |
+
else:
|
609 |
+
x_list.append(y_list[i])
|
610 |
+
x = self.stage4(x_list)
|
611 |
+
dict_return = {}
|
612 |
+
# Upsampling
|
613 |
+
x0_h, x0_w = x[0].size(2), x[0].size(3)
|
614 |
+
|
615 |
+
x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS)
|
616 |
+
# x = self.stage3_(x)
|
617 |
+
x[2] = self.up2(x[3], x[2])
|
618 |
+
x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS)
|
619 |
+
# x = self.stage2_(x)
|
620 |
+
x[1] = self.up3(x[2], x[1])
|
621 |
+
x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS)
|
622 |
+
x[0] = self.up4(x[1], x[0])
|
623 |
+
xk = torch.cat([x[0], x1, x2, x3], 1)
|
624 |
+
# PPM
|
625 |
+
feat = self.ppm(xk)
|
626 |
+
x = self.cls(feat)
|
627 |
+
# fp分支
|
628 |
+
if need_fp:
|
629 |
+
logits = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True)
|
630 |
+
# logits = self.out_conv(torch.cat((x, nn.Dropout2d(0.5)(x))))
|
631 |
+
out = logits
|
632 |
+
out_fp = logits
|
633 |
+
if use_corr:
|
634 |
+
proj_feats = self.proj(xk)
|
635 |
+
corr_out = self.corr(proj_feats, out)
|
636 |
+
corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True)
|
637 |
+
dict_return['corr_out'] = corr_out
|
638 |
+
dict_return['out'] = out
|
639 |
+
dict_return['out_fp'] = out_fp
|
640 |
+
|
641 |
+
return dict_return['out']
|
642 |
+
|
643 |
+
out = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True)
|
644 |
+
if use_corr: # True
|
645 |
+
proj_feats = self.proj(xk)
|
646 |
+
# 计算
|
647 |
+
corr_out = self.corr(proj_feats, out)
|
648 |
+
corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True)
|
649 |
+
dict_return['corr_out'] = corr_out
|
650 |
+
dict_return['out'] = out
|
651 |
+
return dict_return['out']
|
652 |
+
# return x
|
653 |
+
|
654 |
+
def init_weights(self, pretrained='', ):
|
655 |
+
logger.info('=> init weights from normal distribution')
|
656 |
+
for m in self.modules():
|
657 |
+
if isinstance(m, nn.Conv2d):
|
658 |
+
nn.init.normal_(m.weight, std=0.001)
|
659 |
+
elif isinstance(m, nn.BatchNorm2d):
|
660 |
+
nn.init.constant_(m.weight, 1)
|
661 |
+
nn.init.constant_(m.bias, 0)
|
662 |
+
if os.path.isfile(pretrained):
|
663 |
+
pretrained_dict = torch.load(pretrained)
|
664 |
+
logger.info('=> loading pretrained model {}'.format(pretrained))
|
665 |
+
model_dict = self.state_dict()
|
666 |
+
pretrained_dict = {k: v for k, v in pretrained_dict.items()
|
667 |
+
if k in model_dict.keys()}
|
668 |
+
for k, _ in pretrained_dict.items():
|
669 |
+
logger.info(
|
670 |
+
'=> loading {} pretrained model {}'.format(k, pretrained))
|
671 |
+
model_dict.update(pretrained_dict)
|
672 |
+
self.load_state_dict(model_dict)
|
673 |
+
|
674 |
+
|
675 |
+
class OutConv(nn.Sequential):
|
676 |
+
def __init__(self, in_channels, num_classes):
|
677 |
+
super(OutConv, self).__init__(
|
678 |
+
nn.Conv2d(720, num_classes, kernel_size=1)
|
679 |
+
)
|
680 |
+
|
681 |
+
|
682 |
+
class DoubleConv(nn.Sequential):
|
683 |
+
def __init__(self, in_channels, out_channels, mid_channels=None):
|
684 |
+
if mid_channels is None:
|
685 |
+
mid_channels = out_channels
|
686 |
+
super(DoubleConv, self).__init__(
|
687 |
+
nn.Conv2d(in_channels + out_channels, mid_channels, kernel_size=3, padding=1, bias=False),
|
688 |
+
nn.BatchNorm2d(mid_channels),
|
689 |
+
nn.ReLU(inplace=True),
|
690 |
+
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
|
691 |
+
nn.BatchNorm2d(out_channels),
|
692 |
+
nn.ReLU(inplace=True)
|
693 |
+
)
|
694 |
+
|
695 |
+
|
696 |
+
class Up(nn.Module):
|
697 |
+
def __init__(self, in_channels, out_channels, bilinear=True):
|
698 |
+
super(Up, self).__init__()
|
699 |
+
if bilinear:
|
700 |
+
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
701 |
+
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
|
702 |
+
else:
|
703 |
+
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
|
704 |
+
self.conv = DoubleConv(in_channels, out_channels)
|
705 |
+
|
706 |
+
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
|
707 |
+
x1 = self.up(x1)
|
708 |
+
# [N, C, H, W]
|
709 |
+
diff_y = x2.size()[2] - x1.size()[2]
|
710 |
+
diff_x = x2.size()[3] - x1.size()[3]
|
711 |
+
|
712 |
+
# padding_left, padding_right, padding_top, padding_bottom
|
713 |
+
x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,
|
714 |
+
diff_y // 2, diff_y - diff_y // 2])
|
715 |
+
|
716 |
+
x = torch.cat([x2, x1], dim=1)
|
717 |
+
x = self.conv(x)
|
718 |
+
return x
|
719 |
+
|
720 |
+
|
721 |
+
class Corr(nn.Module):
|
722 |
+
def __init__(self, nclass=2):
|
723 |
+
super(Corr, self).__init__()
|
724 |
+
self.nclass = nclass
|
725 |
+
self.conv1 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True)
|
726 |
+
self.conv2 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True)
|
727 |
+
|
728 |
+
def forward(self, feature_in, out):
|
729 |
+
# in torch.Size([4, 32, 22, 22])
|
730 |
+
# out = [4 2 352 352]
|
731 |
+
h_in, w_in = math.ceil(feature_in.shape[2] / (1)), math.ceil(feature_in.shape[3] / (1))
|
732 |
+
out = F.interpolate(out.detach(), (h_in, w_in), mode='bilinear', align_corners=True)
|
733 |
+
feature = F.interpolate(feature_in, (h_in, w_in), mode='bilinear', align_corners=True)
|
734 |
+
f1 = rearrange(self.conv1(feature), 'n c h w -> n c (h w)')
|
735 |
+
f2 = rearrange(self.conv2(feature), 'n c h w -> n c (h w)')
|
736 |
+
out_temp = rearrange(out, 'n c h w -> n c (h w)')
|
737 |
+
corr_map = torch.matmul(f1.transpose(1, 2), f2) / torch.sqrt(torch.tensor(f1.shape[1]).float())
|
738 |
+
corr_map = F.softmax(corr_map, dim=-1)
|
739 |
+
# out_temp 2 2 484
|
740 |
+
# corr_map 4 484 484
|
741 |
+
out = rearrange(torch.matmul(out_temp, corr_map), 'n c (h w) -> n c h w', h=h_in, w=w_in)
|
742 |
+
# out torch.Size([4, 2, 22, 22])
|
743 |
+
return out
|
744 |
+
|
745 |
+
|
746 |
+
if __name__ == '__main__':
|
747 |
+
input = torch.randn(4, 3, 352, 352)
|
748 |
+
cloud = HRCloudNet(num_classes=2)
|
749 |
+
output = cloud(input)
|
750 |
+
print(output.shape)
|
751 |
+
# torch.Size([4, 2, 352, 352]) torch.Size([4, 2, 352, 352]) torch.Size([4, 2, 352, 352])
|
cloud_adapter/kappamask.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2024/8/7 下午3:51
|
3 |
+
# @Author : xiaoshun
|
4 |
+
# @Email : 3038523973@qq.com
|
5 |
+
# @File : kappamask.py.py
|
6 |
+
# @Software: PyCharm
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class KappaMask(nn.Module):
|
14 |
+
def __init__(self, num_classes=2, in_channels=3):
|
15 |
+
super().__init__()
|
16 |
+
self.conv1 = nn.Sequential(
|
17 |
+
nn.Conv2d(in_channels, 64, 3, 1, 1),
|
18 |
+
nn.ReLU(inplace=True),
|
19 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
20 |
+
nn.ReLU(inplace=True),
|
21 |
+
)
|
22 |
+
self.conv2 = nn.Sequential(
|
23 |
+
nn.Conv2d(64, 128, 3, 1, 1),
|
24 |
+
nn.ReLU(inplace=True),
|
25 |
+
nn.Conv2d(128, 128, 3, 1, 1),
|
26 |
+
nn.ReLU(inplace=True),
|
27 |
+
)
|
28 |
+
self.conv3 = nn.Sequential(
|
29 |
+
nn.Conv2d(128, 256, 3, 1, 1),
|
30 |
+
nn.ReLU(inplace=True),
|
31 |
+
nn.Conv2d(256, 256, 3, 1, 1),
|
32 |
+
nn.ReLU(inplace=True),
|
33 |
+
)
|
34 |
+
|
35 |
+
self.conv4 = nn.Sequential(
|
36 |
+
nn.Conv2d(256, 512, 3, 1, 1),
|
37 |
+
nn.ReLU(inplace=True),
|
38 |
+
nn.Conv2d(512, 512, 3, 1, 1),
|
39 |
+
nn.ReLU(inplace=True),
|
40 |
+
)
|
41 |
+
self.drop4 = nn.Dropout(0.5)
|
42 |
+
|
43 |
+
self.conv5 = nn.Sequential(
|
44 |
+
nn.Conv2d(512, 1024, 3, 1, 1),
|
45 |
+
nn.ReLU(inplace=True),
|
46 |
+
nn.Conv2d(1024, 1024, 3, 1, 1),
|
47 |
+
nn.ReLU(inplace=True),
|
48 |
+
)
|
49 |
+
self.drop5 = nn.Dropout(0.5)
|
50 |
+
|
51 |
+
self.up6 = nn.Sequential(
|
52 |
+
nn.Upsample(scale_factor=2),
|
53 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
54 |
+
nn.Conv2d(1024, 512, 2),
|
55 |
+
nn.ReLU(inplace=True)
|
56 |
+
)
|
57 |
+
self.conv6 = nn.Sequential(
|
58 |
+
nn.Conv2d(1024, 512, 3, 1, 1),
|
59 |
+
nn.ReLU(inplace=True),
|
60 |
+
nn.Conv2d(512, 512, 3, 1, 1),
|
61 |
+
nn.ReLU(inplace=True),
|
62 |
+
)
|
63 |
+
self.up7 = nn.Sequential(
|
64 |
+
nn.Upsample(scale_factor=2),
|
65 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
66 |
+
nn.Conv2d(512, 256, 2),
|
67 |
+
nn.ReLU(inplace=True)
|
68 |
+
)
|
69 |
+
self.conv7 = nn.Sequential(
|
70 |
+
nn.Conv2d(512, 256, 3, 1, 1),
|
71 |
+
nn.ReLU(inplace=True),
|
72 |
+
nn.Conv2d(256, 256, 3, 1, 1),
|
73 |
+
nn.ReLU(inplace=True),
|
74 |
+
)
|
75 |
+
|
76 |
+
self.up8 = nn.Sequential(
|
77 |
+
nn.Upsample(scale_factor=2),
|
78 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
79 |
+
nn.Conv2d(256, 128, 2),
|
80 |
+
nn.ReLU(inplace=True)
|
81 |
+
)
|
82 |
+
self.conv8 = nn.Sequential(
|
83 |
+
nn.Conv2d(256, 128, 3, 1, 1),
|
84 |
+
nn.ReLU(inplace=True),
|
85 |
+
nn.Conv2d(128, 128, 3, 1, 1),
|
86 |
+
nn.ReLU(inplace=True),
|
87 |
+
)
|
88 |
+
|
89 |
+
self.up9 = nn.Sequential(
|
90 |
+
nn.Upsample(scale_factor=2),
|
91 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
92 |
+
nn.Conv2d(128, 64, 2),
|
93 |
+
nn.ReLU(inplace=True)
|
94 |
+
)
|
95 |
+
self.conv9 = nn.Sequential(
|
96 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
97 |
+
nn.ReLU(inplace=True),
|
98 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
99 |
+
nn.ReLU(inplace=True),
|
100 |
+
nn.Conv2d(64, 2, 3, 1, 1),
|
101 |
+
nn.ReLU(inplace=True),
|
102 |
+
)
|
103 |
+
self.conv10 = nn.Conv2d(2, num_classes, 1)
|
104 |
+
self.__init_weights()
|
105 |
+
|
106 |
+
def __init_weights(self):
|
107 |
+
for m in self.modules():
|
108 |
+
if isinstance(m, nn.Conv2d):
|
109 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
conv1 = self.conv1(x)
|
113 |
+
pool1 = F.max_pool2d(conv1, 2, 2)
|
114 |
+
|
115 |
+
conv2 = self.conv2(pool1)
|
116 |
+
pool2 = F.max_pool2d(conv2, 2, 2)
|
117 |
+
|
118 |
+
conv3 = self.conv3(pool2)
|
119 |
+
pool3 = F.max_pool2d(conv3, 2, 2)
|
120 |
+
|
121 |
+
conv4 = self.conv4(pool3)
|
122 |
+
drop4 = self.drop4(conv4)
|
123 |
+
pool4 = F.max_pool2d(drop4, 2, 2)
|
124 |
+
|
125 |
+
conv5 = self.conv5(pool4)
|
126 |
+
drop5 = self.drop5(conv5)
|
127 |
+
|
128 |
+
up6 = self.up6(drop5)
|
129 |
+
merge6 = torch.cat((drop4, up6), dim=1)
|
130 |
+
conv6 = self.conv6(merge6)
|
131 |
+
|
132 |
+
up7 = self.up7(conv6)
|
133 |
+
merge7 = torch.cat((conv3, up7), dim=1)
|
134 |
+
conv7 = self.conv7(merge7)
|
135 |
+
|
136 |
+
up8 = self.up8(conv7)
|
137 |
+
merge8 = torch.cat((conv2, up8), dim=1)
|
138 |
+
conv8 = self.conv8(merge8)
|
139 |
+
|
140 |
+
up9 = self.up9(conv8)
|
141 |
+
merge9 = torch.cat((conv1, up9), dim=1)
|
142 |
+
conv9 = self.conv9(merge9)
|
143 |
+
|
144 |
+
output = self.conv10(conv9)
|
145 |
+
return output
|
146 |
+
|
147 |
+
|
148 |
+
if __name__ == '__main__':
|
149 |
+
model = KappaMask(num_classes=2, in_channels=3)
|
150 |
+
fake_data = torch.rand(2, 3, 256, 256)
|
151 |
+
output = model(fake_data)
|
152 |
+
print(output.shape)
|
cloud_adapter/mcdnet.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2024/7/21 下午3:51
|
3 |
+
# @Author : xiaoshun
|
4 |
+
# @Email : 3038523973@qq.com
|
5 |
+
# @File : mcdnet.py
|
6 |
+
# @Software: PyCharm
|
7 |
+
import image_dehazer
|
8 |
+
import numpy as np
|
9 |
+
# 论文地址:https://www.sciencedirect.com/science/article/pii/S1569843224001742?via%3Dihub
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
class _DPFF(nn.Module):
|
16 |
+
def __init__(self, in_channels) -> None:
|
17 |
+
super(_DPFF, self).__init__()
|
18 |
+
self.cbr1 = nn.Conv2d(in_channels * 2, in_channels, 1, 1, bias=False)
|
19 |
+
self.cbr2 = nn.Conv2d(in_channels * 2, in_channels, 1, 1, bias=False)
|
20 |
+
# self.sigmoid = nn.Sigmoid()
|
21 |
+
self.cbr3 = nn.Conv2d(in_channels, in_channels, 1, 1, bias=False)
|
22 |
+
self.cbr4 = nn.Conv2d(in_channels * 2, in_channels, 1, 1, bias=False)
|
23 |
+
|
24 |
+
def forward(self, feature1, feature2):
|
25 |
+
d1 = torch.abs(feature1 - feature2)
|
26 |
+
d2 = self.cbr1(torch.cat([feature1, feature2], dim=1))
|
27 |
+
d = torch.cat([d1, d2], dim=1)
|
28 |
+
d = self.cbr2(d)
|
29 |
+
# d = self.sigmoid(d)
|
30 |
+
|
31 |
+
v1, v2 = self.cbr3(feature1), self.cbr3(feature2)
|
32 |
+
v1, v2 = v1 * d, v2 * d
|
33 |
+
features = torch.cat([v1, v2], dim=1)
|
34 |
+
features = self.cbr4(features)
|
35 |
+
|
36 |
+
return features
|
37 |
+
|
38 |
+
|
39 |
+
class DPFF(nn.Module):
|
40 |
+
def __init__(self, layer_channels) -> None:
|
41 |
+
super(DPFF, self).__init__()
|
42 |
+
self.cfes = nn.ModuleList()
|
43 |
+
for layer_channel in layer_channels:
|
44 |
+
self.cfes.append(_DPFF(layer_channel))
|
45 |
+
|
46 |
+
def forward(self, features1, features2):
|
47 |
+
outputs = []
|
48 |
+
for feature1, feature2, cfe in zip(features1, features2, self.cfes):
|
49 |
+
outputs.append(cfe(feature1, feature2))
|
50 |
+
return outputs
|
51 |
+
|
52 |
+
|
53 |
+
class DirectDPFF(nn.Module):
|
54 |
+
def __init__(self, layer_channels) -> None:
|
55 |
+
super(DirectDPFF, self).__init__()
|
56 |
+
self.fusions = nn.ModuleList(
|
57 |
+
[nn.Conv2d(layer_channel * 2, layer_channel, 1, 1) for layer_channel in layer_channels]
|
58 |
+
)
|
59 |
+
|
60 |
+
def forward(self, features1, features2):
|
61 |
+
outputs = []
|
62 |
+
for feature1, feature2, fusion in zip(features1, features2, self.fusions):
|
63 |
+
feature = torch.cat([feature1, feature2], dim=1)
|
64 |
+
outputs.append(fusion(feature))
|
65 |
+
return outputs
|
66 |
+
|
67 |
+
|
68 |
+
class ConvBlock(nn.Module):
|
69 |
+
def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True,
|
70 |
+
bn=False, activation=True, maxpool=True):
|
71 |
+
super(ConvBlock, self).__init__()
|
72 |
+
self.module = []
|
73 |
+
if maxpool:
|
74 |
+
down = nn.Sequential(
|
75 |
+
*[
|
76 |
+
nn.MaxPool2d(2),
|
77 |
+
nn.Conv2d(input_size, output_size, 1, 1, 0, bias=bias)
|
78 |
+
]
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
down = nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias)
|
82 |
+
self.module.append(down)
|
83 |
+
if bn:
|
84 |
+
self.module.append(nn.BatchNorm2d(output_size))
|
85 |
+
if activation:
|
86 |
+
self.module.append(nn.PReLU())
|
87 |
+
self.module = nn.Sequential(*self.module)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
out = self.module(x)
|
91 |
+
|
92 |
+
return out
|
93 |
+
|
94 |
+
|
95 |
+
class DeconvBlock(nn.Module):
|
96 |
+
def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True,
|
97 |
+
bn=False, activation=True, bilinear=True):
|
98 |
+
super(DeconvBlock, self).__init__()
|
99 |
+
self.module = []
|
100 |
+
if bilinear:
|
101 |
+
deconv = nn.Sequential(
|
102 |
+
*[
|
103 |
+
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
104 |
+
nn.Conv2d(input_size, output_size, 1, 1, 0, bias=bias)
|
105 |
+
]
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
deconv = nn.ConvTranspose2d(input_size, output_size, kernel_size, stride, padding, bias=bias)
|
109 |
+
self.module.append(deconv)
|
110 |
+
if bn:
|
111 |
+
self.module.append(nn.BatchNorm2d(output_size))
|
112 |
+
if activation:
|
113 |
+
self.module.append(nn.PReLU())
|
114 |
+
self.module = nn.Sequential(*self.module)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
out = self.module(x)
|
118 |
+
|
119 |
+
return out
|
120 |
+
|
121 |
+
|
122 |
+
class FusionBlock(torch.nn.Module):
|
123 |
+
def __init__(self, num_filter, num_ft, kernel_size=4, stride=2, padding=1, bias=True, maxpool=False,
|
124 |
+
bilinear=False):
|
125 |
+
super(FusionBlock, self).__init__()
|
126 |
+
self.num_ft = num_ft
|
127 |
+
self.up_convs = nn.ModuleList()
|
128 |
+
self.down_convs = nn.ModuleList()
|
129 |
+
for i in range(self.num_ft):
|
130 |
+
self.up_convs.append(
|
131 |
+
DeconvBlock(num_filter // (2 ** i), num_filter // (2 ** (i + 1)), kernel_size, stride, padding,
|
132 |
+
bias=bias, bilinear=bilinear)
|
133 |
+
)
|
134 |
+
self.down_convs.append(
|
135 |
+
ConvBlock(num_filter // (2 ** (i + 1)), num_filter // (2 ** i), kernel_size, stride, padding, bias=bias,
|
136 |
+
maxpool=maxpool)
|
137 |
+
)
|
138 |
+
|
139 |
+
def forward(self, ft_l, ft_h_list):
|
140 |
+
ft_fusion = ft_l
|
141 |
+
for i in range(len(ft_h_list)):
|
142 |
+
ft = ft_fusion
|
143 |
+
for j in range(self.num_ft - i):
|
144 |
+
ft = self.up_convs[j](ft)
|
145 |
+
ft = ft - ft_h_list[i]
|
146 |
+
for j in range(self.num_ft - i):
|
147 |
+
ft = self.down_convs[self.num_ft - i - j - 1](ft)
|
148 |
+
ft_fusion = ft_fusion + ft
|
149 |
+
|
150 |
+
return ft_fusion
|
151 |
+
|
152 |
+
|
153 |
+
class ConvLayer(nn.Module):
|
154 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=True):
|
155 |
+
super(ConvLayer, self).__init__()
|
156 |
+
reflection_padding = kernel_size // 2
|
157 |
+
self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
|
158 |
+
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
out = self.reflection_pad(x)
|
162 |
+
out = self.conv2d(out)
|
163 |
+
return out
|
164 |
+
|
165 |
+
|
166 |
+
class UpsampleConvLayer(torch.nn.Module):
|
167 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
168 |
+
super(UpsampleConvLayer, self).__init__()
|
169 |
+
self.conv2d = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride)
|
170 |
+
|
171 |
+
def forward(self, x):
|
172 |
+
out = self.conv2d(x)
|
173 |
+
return out
|
174 |
+
|
175 |
+
|
176 |
+
class AddRelu(nn.Module):
|
177 |
+
"""It is for adding two feed forwards to the output of the two following conv layers in expanding path
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(self) -> None:
|
181 |
+
super(AddRelu, self).__init__()
|
182 |
+
self.relu = nn.PReLU()
|
183 |
+
|
184 |
+
def forward(self, input_tensor1, input_tensor2, input_tensor3):
|
185 |
+
x = input_tensor1 + input_tensor2 + input_tensor3
|
186 |
+
return self.relu(x)
|
187 |
+
|
188 |
+
|
189 |
+
class BasicBlock(nn.Module):
|
190 |
+
def __init__(self, in_channels, out_channels, mid_channels=None):
|
191 |
+
super(BasicBlock, self).__init__()
|
192 |
+
if not mid_channels:
|
193 |
+
mid_channels = out_channels
|
194 |
+
self.conv1 = ConvLayer(in_channels, mid_channels, kernel_size=3, stride=1)
|
195 |
+
self.bn1 = nn.BatchNorm2d(mid_channels, momentum=0.1)
|
196 |
+
self.relu = nn.PReLU()
|
197 |
+
|
198 |
+
self.conv2 = ConvLayer(mid_channels, out_channels, kernel_size=3, stride=1)
|
199 |
+
self.bn2 = nn.BatchNorm2d(out_channels, momentum=0.1)
|
200 |
+
|
201 |
+
self.conv3 = ConvLayer(in_channels, out_channels, kernel_size=1, stride=1)
|
202 |
+
|
203 |
+
def forward(self, x):
|
204 |
+
out = self.conv1(x)
|
205 |
+
out = self.bn1(out)
|
206 |
+
out = self.relu(out)
|
207 |
+
|
208 |
+
out = self.conv2(out)
|
209 |
+
out = self.bn2(out)
|
210 |
+
|
211 |
+
residual = self.conv3(x)
|
212 |
+
|
213 |
+
out = out + residual
|
214 |
+
out = self.relu(out)
|
215 |
+
|
216 |
+
return out
|
217 |
+
|
218 |
+
|
219 |
+
class Bottleneck(nn.Module):
|
220 |
+
def __init__(self, in_channels, out_channels):
|
221 |
+
super(Bottleneck, self).__init__()
|
222 |
+
self.conv1 = ConvLayer(in_channels, out_channels, kernel_size=3, stride=1)
|
223 |
+
self.bn1 = nn.BatchNorm2d(out_channels, momentum=0.1)
|
224 |
+
|
225 |
+
self.conv2 = ConvLayer(out_channels, out_channels, kernel_size=3, stride=1)
|
226 |
+
self.bn2 = nn.BatchNorm2d(out_channels, momentum=0.1)
|
227 |
+
|
228 |
+
self.conv3 = ConvLayer(out_channels, out_channels, kernel_size=3, stride=1)
|
229 |
+
self.bn3 = nn.BatchNorm2d(out_channels, momentum=0.1)
|
230 |
+
|
231 |
+
self.conv4 = ConvLayer(in_channels, out_channels, kernel_size=1, stride=1)
|
232 |
+
|
233 |
+
self.relu = nn.PReLU()
|
234 |
+
|
235 |
+
def forward(self, x):
|
236 |
+
out = self.conv1(x)
|
237 |
+
out = self.bn1(out)
|
238 |
+
out = self.relu(out)
|
239 |
+
|
240 |
+
out = self.conv2(out)
|
241 |
+
out = self.bn2(out)
|
242 |
+
out = self.relu(out)
|
243 |
+
|
244 |
+
out = self.conv3(out)
|
245 |
+
out = self.bn3(out)
|
246 |
+
|
247 |
+
residual = self.conv4(x)
|
248 |
+
|
249 |
+
out = out + residual
|
250 |
+
out = self.relu(out)
|
251 |
+
|
252 |
+
return out
|
253 |
+
|
254 |
+
|
255 |
+
class PPM(nn.Module):
|
256 |
+
def __init__(self, in_channels, out_channels):
|
257 |
+
super(PPM, self).__init__()
|
258 |
+
|
259 |
+
self.pool_sizes = [1, 2, 3, 6] # subregion size in each level
|
260 |
+
self.num_levels = len(self.pool_sizes) # number of pyramid levels
|
261 |
+
|
262 |
+
self.conv_layers = nn.ModuleList()
|
263 |
+
for i in range(self.num_levels):
|
264 |
+
self.conv_layers.append(nn.Sequential(
|
265 |
+
nn.AdaptiveAvgPool2d(output_size=self.pool_sizes[i]),
|
266 |
+
nn.Conv2d(in_channels, in_channels // self.num_levels, kernel_size=1),
|
267 |
+
nn.BatchNorm2d(in_channels // self.num_levels),
|
268 |
+
nn.ReLU(inplace=True)
|
269 |
+
))
|
270 |
+
self.out_conv = nn.Conv2d(in_channels * 2, out_channels, kernel_size=1, stride=1)
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
input_size = x.size()[2:] # get input size
|
274 |
+
output = [x]
|
275 |
+
|
276 |
+
# pyramid pooling
|
277 |
+
for i in range(self.num_levels):
|
278 |
+
out = self.conv_layers[i](x)
|
279 |
+
out = F.interpolate(out, size=input_size, mode='bilinear', align_corners=True)
|
280 |
+
output.append(out)
|
281 |
+
|
282 |
+
# concatenate features from different levels
|
283 |
+
output = torch.cat(output, dim=1)
|
284 |
+
output = self.out_conv(output)
|
285 |
+
|
286 |
+
return output
|
287 |
+
|
288 |
+
|
289 |
+
class MCDNet(nn.Module):
|
290 |
+
def __init__(self, in_channels=4, num_classes=4, maxpool=False, bilinear=False) -> None:
|
291 |
+
super().__init__()
|
292 |
+
level = 1
|
293 |
+
# encoder
|
294 |
+
self.conv_input = ConvLayer(in_channels, 32 * level, kernel_size=3, stride=2)
|
295 |
+
|
296 |
+
self.dense0 = BasicBlock(32 * level, 32 * level)
|
297 |
+
self.conv2x = ConvLayer(32 * level, 64 * level, kernel_size=3, stride=2)
|
298 |
+
|
299 |
+
self.dense1 = BasicBlock(64 * level, 64 * level)
|
300 |
+
self.conv4x = ConvLayer(64 * level, 128 * level, kernel_size=3, stride=2)
|
301 |
+
|
302 |
+
self.dense2 = BasicBlock(128 * level, 128 * level)
|
303 |
+
self.conv8x = ConvLayer(128 * level, 256 * level, kernel_size=3, stride=2)
|
304 |
+
|
305 |
+
self.dense3 = BasicBlock(256 * level, 256 * level)
|
306 |
+
self.conv16x = ConvLayer(256 * level, 512 * level, kernel_size=3, stride=2)
|
307 |
+
|
308 |
+
self.dense4 = PPM(512 * level, 512 * level)
|
309 |
+
|
310 |
+
# dpff
|
311 |
+
self.dpffm = DPFF([32, 64, 128, 256, 512])
|
312 |
+
|
313 |
+
# decoder
|
314 |
+
self.convd16x = UpsampleConvLayer(512 * level, 256 * level, kernel_size=3, stride=2)
|
315 |
+
self.fusion4 = FusionBlock(256 * level, 3, maxpool=maxpool, bilinear=bilinear)
|
316 |
+
self.dense_4 = Bottleneck(512 * level, 256 * level)
|
317 |
+
self.add_block4 = AddRelu()
|
318 |
+
|
319 |
+
self.convd8x = UpsampleConvLayer(256 * level, 128 * level, kernel_size=3, stride=2)
|
320 |
+
self.fusion3 = FusionBlock(128 * level, 2, maxpool=maxpool, bilinear=bilinear)
|
321 |
+
self.dense_3 = Bottleneck(256 * level, 128 * level)
|
322 |
+
self.add_block3 = AddRelu()
|
323 |
+
|
324 |
+
self.convd4x = UpsampleConvLayer(128 * level, 64 * level, kernel_size=3, stride=2)
|
325 |
+
self.fusion2 = FusionBlock(64 * level, 1, maxpool=maxpool, bilinear=bilinear)
|
326 |
+
self.dense_2 = Bottleneck(128 * level, 64 * level)
|
327 |
+
self.add_block2 = AddRelu()
|
328 |
+
|
329 |
+
self.convd2x = UpsampleConvLayer(64 * level, 32 * level, kernel_size=3, stride=2)
|
330 |
+
self.dense_1 = Bottleneck(64 * level, 32 * level)
|
331 |
+
self.add_block1 = AddRelu()
|
332 |
+
|
333 |
+
self.head = UpsampleConvLayer(32 * level, num_classes, kernel_size=3, stride=2)
|
334 |
+
self.apply(self._weights_init)
|
335 |
+
|
336 |
+
@torch.no_grad()
|
337 |
+
def get_lr_data(self, x: torch.Tensor) -> torch.Tensor:
|
338 |
+
images = x.cpu().permute(0, 2, 3, 1).numpy() # b, h, w, c
|
339 |
+
batch_size = images.shape[0]
|
340 |
+
lr = []
|
341 |
+
for i in range(batch_size):
|
342 |
+
lr_image = image_dehazer.remove_haze((images[i]*255).astype(np.uint8), showHazeTransmissionMap=False)[0] # h, w, c, numpy.array
|
343 |
+
lr_tensor = torch.from_numpy(lr_image).permute(2, 0, 1)/255. # c, h, w
|
344 |
+
lr.append(lr_tensor)
|
345 |
+
return torch.stack(lr, dim=0).to(x.device) # b, c, h, w
|
346 |
+
|
347 |
+
def _weights_init(self, m):
|
348 |
+
if isinstance(m, nn.Linear):
|
349 |
+
nn.init.xavier_normal_(m.weight)
|
350 |
+
nn.init.constant_(m.bias, 0)
|
351 |
+
elif isinstance(m, nn.Conv2d):
|
352 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
353 |
+
elif isinstance(m, nn.BatchNorm2d):
|
354 |
+
nn.init.constant_(m.weight, 1)
|
355 |
+
nn.init.constant_(m.bias, 0)
|
356 |
+
|
357 |
+
def forward(self, x1):
|
358 |
+
x2 = self.get_lr_data(x1)
|
359 |
+
# encoder1
|
360 |
+
res1x_1 = self.conv_input(x1)
|
361 |
+
res1x_1 = self.dense0(res1x_1)
|
362 |
+
|
363 |
+
res2x_1 = self.conv2x(res1x_1)
|
364 |
+
res2x_1 = self.dense1(res2x_1)
|
365 |
+
|
366 |
+
res4x_1 = self.conv4x(res2x_1)
|
367 |
+
res4x_1 = self.dense2(res4x_1)
|
368 |
+
|
369 |
+
res8x_1 = self.conv8x(res4x_1)
|
370 |
+
res8x_1 = self.dense3(res8x_1)
|
371 |
+
|
372 |
+
res16x_1 = self.conv16x(res8x_1)
|
373 |
+
res16x_1 = self.dense4(res16x_1)
|
374 |
+
|
375 |
+
# encoder2
|
376 |
+
res1x_2 = self.conv_input(x2)
|
377 |
+
res1x_2 = self.dense0(res1x_2)
|
378 |
+
|
379 |
+
res2x_2 = self.conv2x(res1x_2)
|
380 |
+
res2x_2 = self.dense1(res2x_2)
|
381 |
+
|
382 |
+
res4x_2 = self.conv4x(res2x_2)
|
383 |
+
res4x_2 = self.dense2(res4x_2)
|
384 |
+
|
385 |
+
res8x_2 = self.conv8x(res4x_2)
|
386 |
+
res8x_2 = self.dense3(res8x_2)
|
387 |
+
|
388 |
+
res16x_2 = self.conv16x(res8x_2)
|
389 |
+
res16x_2 = self.dense4(res16x_2)
|
390 |
+
|
391 |
+
# dual-perspective feature fusion
|
392 |
+
res1x, res2x, res4x, res8x, res16x = self.dpffm(
|
393 |
+
[res1x_1, res2x_1, res4x_1, res8x_1, res16x_1],
|
394 |
+
[res1x_2, res2x_2, res4x_2, res8x_2, res16x_2]
|
395 |
+
)
|
396 |
+
|
397 |
+
# decoder
|
398 |
+
res8x1 = self.convd16x(res16x)
|
399 |
+
res8x1 = F.interpolate(res8x1, res8x.size()[2:], mode='bilinear')
|
400 |
+
res8x2 = self.fusion4(res8x, [res1x, res2x, res4x])
|
401 |
+
res8x2 = torch.cat([res8x1, res8x2], dim=1)
|
402 |
+
res8x2 = self.dense_4(res8x2)
|
403 |
+
res8x2 = self.add_block4(res8x1, res8x, res8x2)
|
404 |
+
|
405 |
+
res4x1 = self.convd8x(res8x2)
|
406 |
+
res4x1 = F.interpolate(res4x1, res4x.size()[2:], mode='bilinear')
|
407 |
+
res4x2 = self.fusion3(res4x, [res1x, res2x])
|
408 |
+
res4x2 = torch.cat([res4x1, res4x2], dim=1)
|
409 |
+
res4x2 = self.dense_3(res4x2)
|
410 |
+
res4x2 = self.add_block3(res4x1, res4x, res4x2)
|
411 |
+
|
412 |
+
res2x1 = self.convd4x(res4x2)
|
413 |
+
res2x1 = F.interpolate(res2x1, res2x.size()[2:], mode='bilinear')
|
414 |
+
res2x2 = self.fusion2(res2x, [res1x])
|
415 |
+
res2x2 = torch.cat([res2x1, res2x2], dim=1)
|
416 |
+
res2x2 = self.dense_2(res2x2)
|
417 |
+
res2x2 = self.add_block2(res2x1, res2x, res2x2)
|
418 |
+
|
419 |
+
res1x1 = self.convd2x(res2x2)
|
420 |
+
res1x1 = F.interpolate(res1x1, res1x.size()[2:], mode='bilinear')
|
421 |
+
res1x2 = torch.cat([res1x1, res1x], dim=1)
|
422 |
+
res1x2 = self.dense_1(res1x2)
|
423 |
+
res1x2 = self.add_block1(res1x1, res1x, res1x2)
|
424 |
+
|
425 |
+
out = self.head(res1x2)
|
426 |
+
out = F.interpolate(out, x1.size()[2:], mode='bilinear')
|
427 |
+
|
428 |
+
return out
|
429 |
+
|
430 |
+
|
431 |
+
if __name__ == "__main__":
|
432 |
+
num_classes = 2
|
433 |
+
model = MCDNet()
|
434 |
+
# inp = torch.randn(size=(2, 3, 256, 256))
|
435 |
+
# assert model(input).shape == (2, 2, 256, 256)
|
cloud_adapter/scnn.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2024/7/21 下午5:11
|
3 |
+
# @Author : xiaoshun
|
4 |
+
# @Email : 3038523973@qq.com
|
5 |
+
# @File : scnn.py
|
6 |
+
# @Software: PyCharm
|
7 |
+
|
8 |
+
# 论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0924271624000352?via%3Dihub#fn1
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
class SCNN(nn.Module):
|
16 |
+
def __init__(self, in_channels=3, num_classes=2, dropout_p=0.5):
|
17 |
+
super().__init__()
|
18 |
+
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=1)
|
19 |
+
self.conv2 = nn.Conv2d(64, num_classes, kernel_size=1)
|
20 |
+
self.conv3 = nn.Conv2d(num_classes, num_classes, kernel_size=3, padding=1)
|
21 |
+
self.dropout = nn.Dropout2d(p=dropout_p)
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
x = F.relu(self.conv1(x))
|
25 |
+
x = self.dropout(x)
|
26 |
+
x = self.conv2(x)
|
27 |
+
x = self.conv3(x)
|
28 |
+
return x
|
29 |
+
|
30 |
+
|
31 |
+
if __name__ == '__main__':
|
32 |
+
model = SCNN(num_classes=7)
|
33 |
+
fake_img = torch.randn((2, 3, 224, 224))
|
34 |
+
out = model(fake_img)
|
35 |
+
print(out.shape)
|
36 |
+
# torch.Size([2, 7, 224, 224])
|
cloud_adapter/unetmobv2.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2024/8/6 下午3:44
|
3 |
+
# @Author : xiaoshun
|
4 |
+
# @Email : 3038523973@qq.com
|
5 |
+
# @File : unetmobv2.py
|
6 |
+
# @Software: PyCharm
|
7 |
+
import segmentation_models_pytorch as smp
|
8 |
+
import torch
|
9 |
+
from torch import nn as nn
|
10 |
+
|
11 |
+
|
12 |
+
class UNetMobV2(nn.Module):
|
13 |
+
def __init__(self,num_classes,in_channels=3):
|
14 |
+
super().__init__()
|
15 |
+
self.backbone = smp.Unet(
|
16 |
+
encoder_name='mobilenet_v2',
|
17 |
+
encoder_weights=None,
|
18 |
+
in_channels=in_channels,
|
19 |
+
classes=num_classes,
|
20 |
+
)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
x = self.backbone(x)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
if __name__ == '__main__':
|
28 |
+
fake_image = torch.rand(1, 3, 224, 224)
|
29 |
+
model = UNetMobV2(num_classes=2)
|
30 |
+
output = model(fake_image)
|
31 |
+
print(output.size())
|
cloud_adapter/utils.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from typing import List
|
3 |
+
from mmengine.logging import MMLogger
|
4 |
+
|
5 |
+
first_set_requires_grad = True
|
6 |
+
first_set_train = True
|
7 |
+
|
8 |
+
|
9 |
+
def set_requires_grad(model: nn.Module, keywords: List[str]):
|
10 |
+
"""
|
11 |
+
notice:key in name!
|
12 |
+
"""
|
13 |
+
requires_grad_names = []
|
14 |
+
num_params = 0
|
15 |
+
num_trainable = 0
|
16 |
+
for name, param in model.named_parameters():
|
17 |
+
num_params += param.numel()
|
18 |
+
if any(key in name for key in keywords):
|
19 |
+
param.requires_grad = True
|
20 |
+
requires_grad_names.append(name)
|
21 |
+
num_trainable += param.numel()
|
22 |
+
else:
|
23 |
+
param.requires_grad = False
|
24 |
+
global first_set_requires_grad
|
25 |
+
if first_set_requires_grad:
|
26 |
+
logger = MMLogger.get_current_instance()
|
27 |
+
for name in requires_grad_names:
|
28 |
+
logger.info(f"set_requires_grad----{name}")
|
29 |
+
logger.info(
|
30 |
+
f"Total trainable params--{num_trainable}, All params--{num_params}, Ratio--{num_trainable*100/num_params:.1f}%"
|
31 |
+
)
|
32 |
+
first_set_requires_grad = False
|
33 |
+
|
34 |
+
|
35 |
+
def _set_train(model: nn.Module, keywords: List[str], prefix: str = ""):
|
36 |
+
train_names = []
|
37 |
+
for name, child in model.named_children():
|
38 |
+
fullname = ".".join([prefix, name])
|
39 |
+
if any(name.startswith(key) for key in keywords):
|
40 |
+
train_names.append(fullname)
|
41 |
+
child.train()
|
42 |
+
else:
|
43 |
+
train_names += _set_train(child, keywords, prefix=fullname)
|
44 |
+
return train_names
|
45 |
+
|
46 |
+
|
47 |
+
def set_train(model: nn.Module, keywords: List[str]):
|
48 |
+
"""
|
49 |
+
notice:sub name startwith key!
|
50 |
+
"""
|
51 |
+
model.train(False)
|
52 |
+
train_names = _set_train(model, keywords)
|
53 |
+
global first_set_train
|
54 |
+
if first_set_train:
|
55 |
+
logger = MMLogger.get_current_instance()
|
56 |
+
for train_name in train_names:
|
57 |
+
logger.info(f"set_train----{train_name}")
|
58 |
+
first_set_train = False
|
example_inputs/gf1/11.png
ADDED
example_inputs/gf1/48.png
ADDED
example_inputs/gf1/9.png
ADDED
example_inputs/gf2/160.png
ADDED
example_inputs/gf2/2.png
ADDED