File size: 4,485 Bytes
0467378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# -*- coding: utf-8 -*-
# @Time : 2024/8/7 下午3:51
# @Author : xiaoshun
# @Email : 3038523973@qq.com
# @File : kappamask.py.py
# @Software: PyCharm
import torch
from torch import nn as nn
from torch.nn import functional as F
class KappaMask(nn.Module):
def __init__(self, num_classes=2, in_channels=3):
super().__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, 64, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 3, 1, 1),
nn.ReLU(inplace=True),
)
self.conv2 = nn.Sequential(
nn.Conv2d(64, 128, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, 3, 1, 1),
nn.ReLU(inplace=True),
)
self.conv3 = nn.Sequential(
nn.Conv2d(128, 256, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, 1, 1),
nn.ReLU(inplace=True),
)
self.conv4 = nn.Sequential(
nn.Conv2d(256, 512, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.ReLU(inplace=True),
)
self.drop4 = nn.Dropout(0.5)
self.conv5 = nn.Sequential(
nn.Conv2d(512, 1024, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 1024, 3, 1, 1),
nn.ReLU(inplace=True),
)
self.drop5 = nn.Dropout(0.5)
self.up6 = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.ZeroPad2d((0, 1, 0, 1)),
nn.Conv2d(1024, 512, 2),
nn.ReLU(inplace=True)
)
self.conv6 = nn.Sequential(
nn.Conv2d(1024, 512, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.ReLU(inplace=True),
)
self.up7 = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.ZeroPad2d((0, 1, 0, 1)),
nn.Conv2d(512, 256, 2),
nn.ReLU(inplace=True)
)
self.conv7 = nn.Sequential(
nn.Conv2d(512, 256, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, 1, 1),
nn.ReLU(inplace=True),
)
self.up8 = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.ZeroPad2d((0, 1, 0, 1)),
nn.Conv2d(256, 128, 2),
nn.ReLU(inplace=True)
)
self.conv8 = nn.Sequential(
nn.Conv2d(256, 128, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, 3, 1, 1),
nn.ReLU(inplace=True),
)
self.up9 = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.ZeroPad2d((0, 1, 0, 1)),
nn.Conv2d(128, 64, 2),
nn.ReLU(inplace=True)
)
self.conv9 = nn.Sequential(
nn.Conv2d(128, 64, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 3, 1, 1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 2, 3, 1, 1),
nn.ReLU(inplace=True),
)
self.conv10 = nn.Conv2d(2, num_classes, 1)
self.__init_weights()
def __init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
def forward(self, x):
conv1 = self.conv1(x)
pool1 = F.max_pool2d(conv1, 2, 2)
conv2 = self.conv2(pool1)
pool2 = F.max_pool2d(conv2, 2, 2)
conv3 = self.conv3(pool2)
pool3 = F.max_pool2d(conv3, 2, 2)
conv4 = self.conv4(pool3)
drop4 = self.drop4(conv4)
pool4 = F.max_pool2d(drop4, 2, 2)
conv5 = self.conv5(pool4)
drop5 = self.drop5(conv5)
up6 = self.up6(drop5)
merge6 = torch.cat((drop4, up6), dim=1)
conv6 = self.conv6(merge6)
up7 = self.up7(conv6)
merge7 = torch.cat((conv3, up7), dim=1)
conv7 = self.conv7(merge7)
up8 = self.up8(conv7)
merge8 = torch.cat((conv2, up8), dim=1)
conv8 = self.conv8(merge8)
up9 = self.up9(conv8)
merge9 = torch.cat((conv1, up9), dim=1)
conv9 = self.conv9(merge9)
output = self.conv10(conv9)
return output
if __name__ == '__main__':
model = KappaMask(num_classes=2, in_channels=3)
fake_data = torch.rand(2, 3, 256, 256)
output = model(fake_data)
print(output.shape) |