Text Generation
Transformers
PyTorch
llama
text-generation-inference
Inference Endpoints
File size: 10,884 Bytes
c92e703
 
 
9e1374d
 
0449e37
9e1374d
d210fc2
 
 
9e1374d
4dd9f3f
 
 
9e1374d
 
d3ad8d7
9e1374d
 
4dd9f3f
 
 
9e1374d
4dd9f3f
9e1374d
4dd9f3f
7e93e9c
4dd9f3f
 
 
 
 
 
7e93e9c
12cd469
4dd9f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a85fcdf
 
 
 
 
 
 
 
 
 
 
9e1374d
4dd9f3f
 
 
 
 
 
 
 
 
 
 
9e1374d
 
cf6c2ab
9e1374d
cf6c2ab
9e1374d
3431179
9e1374d
3431179
 
 
 
 
9e1374d
 
 
482ff2d
9fe34a5
5aaed74
97e5913
 
5aaed74
9e1374d
 
 
5aaed74
9e1374d
 
 
5aaed74
 
 
e089c3f
 
 
 
9e1374d
 
 
 
 
 
 
3431179
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: llama2
---


## WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct (RLEIF)

<p style="font-size:28px;" align="center">
🏠 <a href="https://wizardlm.github.io/" target="_blank">Home Page</a> </p>
<p align="center">
<p align="center">
πŸ€— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a>  β€’πŸ± <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> </p>
<p align="center">
 πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a>  β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>   β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>  <br>
</p>
<p align="center">
    πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
</p>

## News

[12/19/2023] πŸ”₯ We released **WizardMath-7B-V1.1** trained from Mistral-7B, the **SOTA 7B math LLM**, achieves **83.2 pass@1** on GSM8k, and **33.0 pass@1** on MATH.

[12/19/2023] πŸ”₯ **WizardMath-7B-V1.1** outperforms **ChatGPT 3.5**, **Gemini Pro**, **Mixtral MOE**, and **Claude Instant** on GSM8K pass@1.

[12/19/2023] πŸ”₯ **WizardMath-7B-V1.1** is comparable with **ChatGPT 3.5**, **Gemini Pro**, and surpasses **Mixtral MOE** on MATH pass@1.

| Model | Checkpoint | Paper  | GSM8k | MATH  |
| ----- |------| ---- |------|-------| 
| **WizardMath-7B-V1.1** | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.1" target="_blank">HF Link</a>  |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| 	 **83.2**  |  **33.0** | 
| WizardMath-70B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6**  |  **22.7**	|
| WizardMath-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9**  |  **14.0** |
| WizardMath-7B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a>  |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| 	 **54.9**  |  **10.7** |  
   

 

## [12/19/2023] Comparing WizardMath-7B-V1.1 with other open source 7B size math LLMs.

| Model | GSM8k Pass@1 | MATH Pass@1 |
| ----- |------| ---- |
| MPT-7B              | 6.8          | 3.0         |
|Llama 1-7B          | 11.0         | 2.9         |
|Llama 2-7B|12.3	|2.8	|
|Yi-6b| 32.6	|5.8	|
|Mistral-7B|37.8	|9.1	|
|Qwen-7b|47.8	|9.3	|
| RFT-7B              | 50.3         | --          |
| MAmmoTH-7B (COT)    | 50.5         | 10.4        |
| WizardMath-7B-V1.0 | 54.9  |  10.7 |
|Abel-7B-001 |59.7	|13	|
| MetaMath-7B         | 66.5         | 19.8        |
| Arithmo-Mistral-7B  | 74.7         | 25.3        |
|MetaMath-Mistral-7B|77.7	|28.2	|
|Abel-7B-002 |	80.4 | 29.5	|
| **WizardMath-7B-V1.1** |  **83.2**  |  **33.0** |


## [12/19/2023] Comparing WizardMath-7B-V1.1 with large open source (30B~70B) LLMs.

| Model | GSM8k Pass@1 | MATH Pass@1 |
| ----- |------| ---- |
| Llemma-34B             | 51.5          |   25.0       |
| Minerva-62B             | 52.4          |  27.6        |
| Llama 2-70B             | 56.8          |  13.5        |
|  DeepSeek 67B            | 63.4          |  --        |
|  Gork 33B            | 62.9          |  23.9       |
| MAmmoTH-70B             | 72.4          |  21.1       |
| Yi-34B            | 67.9          |   15.9       |
| Mixtral 8x7B            | 74.4          |   28.4      |
|  MetaMath-70B  | 82.3          |   26.6       |
| **WizardMath-7B-V1.1** |  **83.2**  |  **33.0** |


## ❗ Data Contamination Check:

Before model training, we carefully and rigorously checked all the training data, and used multiple deduplication methods to verify and prevent data leakage on GSM8k and MATH test set. 

<font size=4>
    
| <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup>  | <sup>GSM8k</sup> | <sup>HumanEval</sup>  | <sup>License</sup>|
| ----- |------| ---- |------|-------| ----- | ----- | ----- | 
| <sup>**WizardLM-70B-V1.0**</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>πŸ“ƒ**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup>	 |<sup>**77.6%**</sup>	 | <sup>   **50.6 pass@1**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.2</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>|  | <sup>7.06</sup> | <sup>89.17%</sup>	 |<sup>55.3%</sup>	 | <sup>36.6  pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.1</sup> |<sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> |  | <sup>6.76</sup>  |<sup>86.32%</sup>	 | 	 | <sup>25.0  pass@1</sup>| <sup>Non-commercial</sup>|
| <sup>WizardLM-30B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup>  | | <sup>7.01</sup> |                    | |  <sup>37.8  pass@1</sup>| <sup>Non-commercial</sup> |
| <sup>WizardLM-13B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> |  | <sup>6.35</sup> | <sup>75.31%</sup> |  | <sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>|
| <sup>WizardLM-7B-V1.0 </sup>|  <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>|  |  |  |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>|
</font>


|  Model  |  Checkpoint  | Paper    | HumanEval  |   MBPP | Demo | License |
| ----- |------| ---- |------|-------| ----- |  ----- | 
|  WizardCoder-Python-34B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  73.2   | 61.2 | [Demo](http://47.103.63.15:50085/) |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>  |
|  WizardCoder-15B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  59.8   |50.6 | -- |  <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>  |
|  WizardCoder-Python-13B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  64.0   | 55.6 | -- |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>  |
|  WizardCoder-Python-7B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  55.5   | 51.6 | [Demo](http://47.103.63.15:50088/) |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>  |
|  WizardCoder-3B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  34.8   |37.4 | -- |  <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>  |
|  WizardCoder-1B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  23.8   |28.6 | -- |  <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>  |


**Github Repo**: https://github.com/nlpxucan/WizardLM/tree/main/WizardMath

**Twitter**: https://twitter.com/WizardLM_AI/status/1689998428200112128

**Discord**: https://discord.gg/VZjjHtWrKs

## Comparing WizardMath-V1.0 with Other LLMs.

πŸ”₯ The following figure shows that our **WizardMath-70B-V1.0 attains the fifth position in this benchmark**, surpassing ChatGPT (81.6 vs. 80.8) , Claude Instant (81.6 vs. 80.9), PaLM 2 540B (81.6 vs. 80.7).

<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardMath/images/wizardmath_gsm8k.png" alt="WizardMath" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>

❗<b>Note for model system prompts usage:</b>

Please use **the same systems prompts strictly** with us, and we do not guarantee the accuracy of the **quantified versions**.

**Default version:**

```
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
```


**CoT Version:** οΌˆβ—For the **simple** math questions, we do NOT recommend to use the CoT prompt.οΌ‰ 


```
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response: Let's think step by step."
```

## Inference WizardMath Demo Script

We provide the WizardMath inference demo code [here](https://github.com/nlpxucan/WizardLM/tree/main/demo).


❗<b>To commen concern about dataset:</b>

Recently, there have been clear changes in the open-source policy and regulations of our overall organization's code, data, and models. 
Despite this, we have still worked hard to obtain opening the weights of the model first, but the data involves stricter auditing and is in review with our legal team .
Our researchers have no authority to publicly release them without authorization.
Thank you for your understanding.


## Citation

Please cite the repo if you use the data, method or code in this repo.

```
@article{luo2023wizardmath,
  title={WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct},
  author={Luo, Haipeng and Sun, Qingfeng and Xu, Can and Zhao, Pu and Lou, Jianguang and Tao, Chongyang and Geng, Xiubo and Lin, Qingwei and Chen, Shifeng and Zhang, Dongmei},
  journal={arXiv preprint arXiv:2308.09583},
  year={2023}
}
```