Bengali Speech Tagger - Conformer CTC Model
This speech tagger performs transcription for Bengali, annotates key entities, predicts speaker age, dialect and intent.
Model Details
- Model Type: NeMo ASR
- Architecture: Conformer CTC
- Language: Bengali
- Training Data: AI4Bharat IndicVoices Bengali V1 and V2 dataset
- Task: Speech Recognition with Entity Tagging
Usage
import nemo.collections.asr as nemo_asr
# Load model
asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained('WhissleAI/speech-tagger_bn_ctc_meta')
# Transcribe audio
transcription = asr_model.transcribe(['path/to/audio.wav'])
print(transcription[0])
Model Training
- Base model: Conformer CTC
- Fine-tuned on AI4Bharat IndicVoices Marathi dataset
- Optimized for real-time transcription
License & Attribution
Please cite AI4Bharat when using this model: https://indicvoices.ai4bharat.org/
- Downloads last month
- 5