File size: 5,819 Bytes
cd221f8 2258182 cd221f8 583254a cd221f8 2258182 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
license: other
tags:
- yi
- moe
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE
model-index:
- name: Helion-4x34B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.71
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.28
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.33
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.91
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.25
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B
name: Open LLM Leaderboard
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/GA28gWAezC9qhrTcwSfuA.jpeg)
# Helion-4x34B
This is the model for Helion-4x34B. I used [mergekit](https://github.com/cg123/mergekit) to make this MOE model.
# Prompt Template(s):
Since [bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2) uses many prompt templates, you can utilize prompt templates provided by bagel and other expert's prompt templates.
**Note:** I currently do not know which prompt template is best.
### ChatML:
```
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
```
### Human Asistant
```
Human: {user}
### Assistant: {asistant}
```
### Alpaca (sort of)
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{system}
{instruction}
### Response:
```
### Vicuna
```
{system}
USER: {instruction}
ASSISTANT:
```
Visit [bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2) to try more prompt templates.
# Yaml Config to reproduce
```yaml
base_model: nontoxic-bagel-34b-v0.2
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: bagel-dpo-34b-v0.2
positive_prompts: ["question answering", "Q:", science", "biology", "chemistry", "physics"]
negative_prompts: ["math", "reason", "mathematics", "solve", "count", "code", "python", "javascript", "programming", "algorithm"]
- source_model: Nous-Hermes-2-Yi-34B
positive_prompts: ["chat", "math", "reason", "mathematics", "solve", "count", "python", "javascript", "programming", "algorithm", "tell me", "assistant"]
- source_model: SUS-Chat-34B
positive_prompts: ["math", "reason", "mathematics", "solve", "count", "assistant"]
- source_model: platypus-yi-34b
positive_prompts: [""]
negative_prompts: ["math", "reason", "mathematics", "solve", "count"]
```
# Quantizationed versions
Quantizationed versions of this model is available thanks to [TheBloke](https://hf.co/TheBloke).
##### GPTQ
- [TheBloke/Helion-4x34B-GPTQ](https://huggingface.co/TheBloke/Helion-4x34B-GPTQ)
##### GGUF
- [TheBloke/Helion-4x34B-GGUF](https://huggingface.co/TheBloke/Helion-4x34B-GGUF)
##### AWQ
- [TheBloke/Helion-4x34B-AWQ](https://huggingface.co/TheBloke/Helion-4x34B-AWQ)
If you would like to support me:
[☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Helion-4x34B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |75.48|
|AI2 Reasoning Challenge (25-Shot)|69.71|
|HellaSwag (10-Shot) |85.28|
|MMLU (5-Shot) |77.33|
|TruthfulQA (0-shot) |63.91|
|Winogrande (5-shot) |84.37|
|GSM8k (5-shot) |72.25|
|